Patricia Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675351/publications.pdf

Version: 2024-02-01

304743 2,077 64 22 h-index citations papers

g-index 67 67 67 2967 docs citations times ranked citing authors all docs

243625

44

#	Article	IF	CITATIONS
1	Advances in the development of biobased epoxy resins: insight into more sustainable materials and future applications. International Materials Reviews, 2022, 67, 119-149.	19.3	42
2	Immobilization of TiO2 onto a polymeric support for photocatalytic oxidation of a paraben's mixture. Journal of Water Process Engineering, 2022, 46, 102458.	5.6	6
3	Solar energy for liquid wastewater treatment with novel TiO2 supported catalysts. Energy Reports, 2022, 8, 489-494.	5.1	6
4	Formulation and Characterization of Stimuli-Responsive Lecithin-Based Liposome Complexes with Poly(acrylic acid)/Poly(N,N-dimethylaminoethyl methacrylate) and Pluronic® Copolymers for Controlled Drug Delivery. Pharmaceutics, 2022, 14, 735.	4.5	4
5	Fractionation of black liquor using ZnO nanoparticles/PES ultrafiltration membranes: Effect of operating variables. Journal of Cleaner Production, 2022, 345, 131183.	9.3	15
6	Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics, 2022, 14, 1377.	4.5	11
7	Optimization of hemicellulose recovery from black liquor using ZnO/PES ultrafiltration membranes in crossflow mode. Journal of Industrial and Engineering Chemistry, 2022, 114, 254-262.	5.8	3
8	Polysaccharide-Based Composites for Biomedical Applications. Materials Horizons, 2021, , 19-34.	0.6	2
9	Polyester-based photocrosslinkable bioadhesives for wound closure and tissue regeneration support. Reactive and Functional Polymers, 2021, 158, 104798.	4.1	10
10	Microencapsulation of Lactobacillus plantarum in W/O emulsions of okara oil and block-copolymers of poly(acrylic acid) and pluronic using microfluidic devices. Food Research International, 2021, 140, 110053.	6.2	22
11	Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Separation and Purification Technology, 2021, 260, 118231.	7.9	32
12	Synthesis and characterization of itaconic-based epoxy resin: Chemical and thermal properties of partially biobased epoxy resins. Polymer, 2021, 235, 124285.	3.8	9
13	Analysing the Initial Bacterial Adhesion to Evaluate the Performance of Antifouling Surfaces. Antibiotics, 2020, 9, 421.	3.7	4
14	Photocurable Polymeric Blends for Surgical Application. Materials, 2020, 13, 5681.	2.9	2
15	Efficacy of A Poly(MeOEGMA) Brush on the Prevention of Escherichia coli Biofilm Formation and Susceptibility. Antibiotics, 2020, 9, 216.	3.7	18
16	Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesives. Journal of Applied Polymer Science, 2020, 137, 49092.	2.6	10
17	The potential advantages of using a poly(HPMA) brush in urinary catheters: effects on biofilm cells and architecture. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110976.	5.0	32
18	Utilization of TBDMS chitosan for synthesis of photoactive chitosan derivatives and application in photografting on ophthalmic lens material. Reactive and Functional Polymers, 2020, 153, 104600.	4.1	4

#	Article	IF	Citations
19	Functionalized polyester-based materials as UV curable adhesives. European Polymer Journal, 2019, 120, 109196.	5.4	15
20	Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions. Environmental Microbiology, 2019, 21, 4411-4424.	3.8	33
21	Preparation of biodegradable functionalized polyesters aimed to be used as surgical adhesives. European Polymer Journal, 2019, 117, 442-454.	5.4	9
22	Photocrosslinkable Nanofibrous Asymmetric Membrane Designed for Wound Dressing. Polymers, 2019, 11, 653.	4.5	23
23	Moxifloxacin-loaded acrylic intraocular lenses: In vitro and in vivo performance. Journal of Cataract and Refractive Surgery, 2019, 45, 1808-1817.	1.5	16
24	Long term stability and interaction with epithelial cells of freeze-dried pH-responsive liposomes functionalized with cholesterol-poly(acrylic acid). Colloids and Surfaces B: Biointerfaces, 2018, 164, 50-57.	5.0	7
25	Thermal-responsive hydrogels for sublingual administration of Ondansetronâ,,¢. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 765-775.	3.4	1
26	The effects of fluid composition and shear conditions on bacterial adhesion to an antifouling peptide-coated surface. MRS Communications, 2018, 8, 938-946.	1.8	12
27	Development and characterization of iron-pectin beads as a novel system for iron delivery to intestinal cells. Colloids and Surfaces B: Biointerfaces, 2018, 170, 538-543.	5.0	21
28	Modelling the Release of Moxifloxacin from Plasma Grafted Intraocular Lenses with Rotational Symmetric Numerical Framework. Lecture Notes in Computer Science, 2018, , 329-339.	1.3	0
29	Effect of shear stress on the reduction of bacterial adhesion to antifouling polymers. Bioinspiration and Biomimetics, 2018, 13, 065001.	2.9	27
30	Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 152, 103-113.	5.0	14
31	Controlled release of moxifloxacin from intraocular lenses modified by Ar plasma-assisted grafting with AMPS or SBMA: An in vitro study. Colloids and Surfaces B: Biointerfaces, 2017, 156, 95-103.	5.0	19
32	Endocytosis and intracellular traffic of cholesterol-PDMAEMA liposome complexes in human epithelial-like cells. Colloids and Surfaces B: Biointerfaces, 2017, 156, 38-43.	5.0	15
33	Layer-by-layer encapsulation of Lactobacillus delbrueckii subsp. Bulgaricus using block-copolymers of poly(acrylic acid) and pluronic for safe release in gastro-intestinal conditions. Journal of Functional Foods, 2017, 35, 408-417.	3.4	23
34	Photocrosslinkable electrospun fiber meshes for tissue engineering applications. European Polymer Journal, 2017, 97, 210-219.	5. 4	26
35	Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 120, 52-62.	4.3	19
36	Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids and Surfaces B: Biointerfaces, 2017, 159, 7-15.	5.0	66

#	Article	IF	Citations
37	Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1539-1548.	7.5	38
38	Evaluation of SICAN performance for biofouling mitigation in the food industry. Food Control, 2016, 62, 201-207.	5.5	19
39	Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives. Reactive and Functional Polymers, 2015, 94, 43-54.	4.1	23
40	Using an in-vitro biofilm model to assess the virulence potential of Bacterial Vaginosis or non-Bacterial Vaginosis Gardnerella vaginalis isolates. Scientific Reports, 2015, 5, 11640.	3.3	107
41	Improving polymeric surfaces for biomedical applications: a review. Journal of Coatings Technology Research, 2015, 12, 463-475.	2.5	49
42	Surface modification of intraocular lenses towards controlled drug delivery. Acta Ophthalmologica, 2015, 93, n/a-n/a.	1.1	1
43	Stabilization of polymer lipid complexes prepared with lipids of lactic acid bacteria upon preservation and internalization into eukaryotic cells. Colloids and Surfaces B: Biointerfaces, 2014, 123, 446-451.	5.0	6
44	Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids and Surfaces B: Biointerfaces, 2014, 113, 25-32.	5.0	81
45	Gardnerella vaginalis Outcompetes 29 Other Bacterial Species Isolated From Patients With Bacterial Vaginosis, Using in an In Vitro Biofilm Formation Model. Journal of Infectious Diseases, 2014, 210, 593-596.	4.0	95
46	Improving cell adhesion: development of a biosensor for cell behaviour monitoring by surface grafting of sulfonic groups onto a thermoplastic polyurethane. Journal of Materials Science: Materials in Medicine, 2014, 25, 2017-2026.	3.6	14
47	Synthesis of a dextran based thermo-sensitive drug delivery system by gamma irradiation. International Journal of Biological Macromolecules, 2013, 61, 150-155.	7.5	17
48	Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion. Applied Surface Science, 2013, 283, 744-750.	6.1	10
49	Effect of cholesterol-poly(N,N-dimethylaminoethyl methacrylate) on the properties of stimuli-responsive polymer liposome complexes. Colloids and Surfaces B: Biointerfaces, 2013, 104, 254-261.	5.0	14
50	Influence of anaerobic conditions on vaginal microbiota recovery from bacterial vaginosis patients. Sexually Transmitted Infections, 2013, 89, 307-307.	1.9	10
51	Molecular Dynamics Study of Oligomer-Membrane Complexes with Biomedical Relevance. Advanced Structured Materials, 2013, , 55-67.	0.5	0
52	Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses. Science and Technology of Advanced Materials, 2013, 14, 055006.	6.1	81
53	Alginate based scaffolds for bone tissue engineering. Materials Science and Engineering C, 2012, 32, 2596-2603.	7.3	77
54	Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: Synthesis and characterization. International Journal of Biological Macromolecules, 2011, 49, 573-579.	7.5	97

#	Article	IF	CITATIONS
55	Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloids and Surfaces B: Biointerfaces, 2011, 82, 371-377.	5.0	40
56	Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains. Journal of Biomedical Materials Research - Part A, 2011, 98A, 535-543.	4.0	18
57	Surface modification of a thermoplastic polyurethane by lowâ€pressure plasma treatment to improve hydrophilicity. Journal of Applied Polymer Science, 2011, 122, 2302-2308.	2.6	54
58	Polymers for Biomedical Applications. , 2011, , 21-44.		0
59	Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids and Surfaces B: Biointerfaces, 2010, 81, 20-26.	5.0	151
60	Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA Journal, 2010, 1, 164-209.	6.1	293
61	Surface modification of thermoplastic polyurethane in order to enhance reactivity and avoid cell adhesion. Colloid and Polymer Science, 2009, 287, 1469-1474.	2.1	8
62	Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal, 2009, 45, 1412-1419.	5.4	160
63	Polyurethane-based microparticles: Formulation and influence of processes variables on its characteristics. Journal of Microencapsulation, 2008, 25, 154-169.	2.8	31
64	Scale-up of Poly[(Vinyl Chloride)-b-(n-Butyl Acrylate)-b-(Vinyl Chloride)] prepared by Living Radical Polymerization. Materials Science Forum, 2006, 514-516, 975-979.	0.3	2