John Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675144/publications.pdf Version: 2024-02-01

IOHN CRIFFIN

#	Article	IF	CITATIONS
1	New Perspectives on the Charging Mechanisms of Supercapacitors. Journal of the American Chemical Society, 2016, 138, 5731-5744.	13.7	529
2	First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist's Point of View. Chemical Reviews, 2012, 112, 5733-5779.	47.7	446
3	In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nature Materials, 2015, 14, 812-819.	27.5	296
4	Direct observation of ion dynamics in supercapacitor electrodes using inÂsitu diffusion NMR spectroscopy. Nature Energy, 2017, 2, .	39.5	285
5	High-Rate Intercalation without Nanostructuring in Metastable Nb ₂ O ₅ Bronze Phases. Journal of the American Chemical Society, 2016, 138, 8888-8899.	13.7	247
6	Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture. Journal of Materials Chemistry A, 2017, 5, 11682-11692.	10.3	187
7	NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors. Journal of the American Chemical Society, 2015, 137, 7231-7242.	13.7	182
8	In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism. Journal of the American Chemical Society, 2013, 135, 18968-18980.	13.7	152
9	Catalytic inverse vulcanization. Nature Communications, 2019, 10, 647.	12.8	143
10	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	5.3	125
11	Quantifying Weak Hydrogen Bonding in Uracil and 4-Cyano-4â€~-ethynylbiphenyl:  A Combined Computational and Experimental Investigation of NMR Chemical Shifts in the Solid State. Journal of the American Chemical Society, 2008, 130, 945-954.	13.7	112
12	Ring Current Effects: Factors Affecting the NMR Chemical Shift of Molecules Adsorbed on Porous Carbons. Journal of Physical Chemistry C, 2014, 118, 7508-7514.	3.1	110
13	Expanding the chemistry of borates with functional [BO2]â^' anions. Nature Communications, 2021, 12, 2597.	12.8	99
14	lon counting in supercapacitor electrodes using NMR spectroscopy. Faraday Discussions, 2014, 176, 49-68.	3.2	95
15	New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis. Chemistry of Materials, 2015, 27, 6848-6857.	6.7	88
16	High-Resolution ¹⁹ F MAS NMR Spectroscopy: Structural Disorder and Unusual <i>J</i> Couplings in a Fluorinated Hydroxy-Silicate. Journal of the American Chemical Society, 2010, 132, 15651-15660.	13.7	83
17	Complete 1H resonance assignment of β-maltose from 1H–1H DQ-SQ CRAMPS and 1H (DQ-DUMBO)–13C refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations. Physical Chemistry Chemical Physics, 2010, 12, 6970.	: SQ 2.8	83
18	Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Physical Chemistry Chemical Physics, 2013, 15, 7722.	2.8	77

John Griffin

#	Article	IF	CITATIONS
19	Structural Chemistry, Monoclinic-to-Orthorhombic Phase Transition, and CO ₂ Adsorption Behavior of the Small Pore Scandium Terephthalate, Sc ₂ (O ₂ CC ₆ H ₄ CO ₂) ₃ , and Its Nitro- And Amino-Functionalized Derivatives. Inorganic Chemistry, 2011, 50, 10844-10858.	4.0	75
20	Donor–acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. Chemical Science, 2017, 8, 3126-3136.	7.4	64
21	Ionothermal 170 enrichment of oxides using microlitre quantities of labelled water. Chemical Science, 2012, 3, 2293.	7.4	57
22	Characterization of the Dynamics in the Protonic Conductor CsH ₂ PO ₄ by ¹⁷ O Solid-State NMR Spectroscopy and First-Principles Calculations: Correlating Phosphate and Protonic Motion. Journal of the American Chemical Society, 2015, 137, 3867-3876.	13.7	53
23	Lithium Conductivity and Ions Dynamics in LiBH ₄ /SiO ₂ Solid Electrolytes Studied by Solid-State NMR and Quasi-Elastic Neutron Scattering and Applied in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2018, 122, 15264-15275.	3.1	51
24	Solid-state NMR studies of supercapacitors. Solid State Nuclear Magnetic Resonance, 2016, 74-75, 16-35.	2.3	49
25	Recent Advances in Solid-State Nuclear Magnetic Resonance Spectroscopy. Annual Review of Analytical Chemistry, 2018, 11, 485-508.	5.4	45
26	Molecular Modeling, Multinuclear NMR, and Diffraction Studies in the Templated Synthesis and Characterization of the Aluminophosphate Molecular Sieve STA-2. Journal of Physical Chemistry C, 2010, 114, 12698-12710.	3.1	44
27	Perspectives for next generation lithium-ion battery cathode materials. APL Materials, 2021, 9, .	5.1	44
28	Water in the Earth's mantle: a solid-state NMR study of hydrous wadsleyite. Chemical Science, 2013, 4, 1523.	7.4	41
29	Transformation of AlPO-53 to JDF-2: Reversible Dehydration of a Templated Aluminophosphate Studied by MAS NMR and Diffraction. Journal of Physical Chemistry C, 2009, 113, 10780-10789.	3.1	40
30	Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustainable Energy and Fuels, 2020, 4, 1285-1295.	4.9	34
31	Long-Term Solar Energy Storage under Ambient Conditions in a MOF-Based Solid–Solid Phase-Change Material. Chemistry of Materials, 2020, 32, 9925-9936.	6.7	33
32	Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 215-228.	4.9	32
33	Ion Dynamics in Li ₂ CO ₃ Studied by Solid-State NMR and First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 24255-24264.	3.1	31
34	Dynamics on the microsecond timescale in hydrous silicates studied by solid-state 2H NMR spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 2989.	2.8	30
35	Lattice simulation method to model diffusion and NMR spectra in porous materials. Journal of Chemical Physics, 2015, 142, 094701.	3.0	28
36	77Se Solid-State NMR of Inorganic and Organoselenium Systems: A Combined Experimental and Computational Study. Journal of Physical Chemistry C, 2011, 115, 10859-10872.	3.1	25

John Griffin

#	Article	IF	CITATIONS
37	Observation of "hidden―magnesium: First-principles calculations and 25Mg solid-state NMR of enstatite. Solid State Nuclear Magnetic Resonance, 2011, 40, 91-99.	2.3	25
38	A Multinuclear NMR Study of Six Forms of AlPO-34: Structure and Motional Broadening. Journal of Physical Chemistry C, 2017, 121, 1781-1793.	3.1	25
39	A Multinuclear Solid-State NMR Study of Templated and Calcined Chabazite-Type GaPO-34. Journal of Physical Chemistry C, 2012, 116, 15048-15057.	3.1	24
40	NMR studies of adsorption and diffusion in porous carbonaceous materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 124-125, 57-84.	7.5	19
41	Factors affecting the nucleus-independent chemical shift in NMR studies of microporous carbon electrode materials. Energy Storage Materials, 2019, 21, 335-346.	18.0	18
42	lon Dynamics and CO ₂ Absorption Properties of Nb-, Ta-, and Y-Doped Li ₂ ZrO ₃ Studied by Solid-State NMR, Thermogravimetry, and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 21877-21886.	3.1	17
43	Metal organic frameworks for hydrogen purification. International Journal of Hydrogen Energy, 2021, 46, 23380-23405.	7.1	17
44	Surface Engineering Strategy Using Urea To Improve the Rate Performance of Na ₂ Ti ₃ O ₇ in Naâ€lon Batteries. Chemistry - A European Journal, 2021, 27, 3875-3886.	3.3	14
45	A Picture of Disorder in Hydrous Wadsleyite—Under the Combined Microscope of Solid-State NMR Spectroscopy and Ab Initio Random Structure Searching. Journal of the American Chemical Society, 2019, 141, 3024-3036.	13.7	13
46	Efficient solid-state photoswitching of methoxyazobenzene in a metal–organic framework for thermal energy storage. Chemical Science, 2022, 13, 3014-3019.	7.4	11
47	Selective observation of charge storing ions in supercapacitor electrode materials. Solid State Nuclear Magnetic Resonance, 2018, 89, 45-49.	2.3	10
48	Crystalline azobenzene composites as photochemical phase-change materials. New Journal of Chemistry, 2022, 46, 4057-4061.	2.8	9
49	Effect of Transition Metal Substitution on the Flexibility and Thermal Properties of MOF-Based Solid–Solid Phase Change Materials. Inorganic Chemistry, 2021, 60, 12950-12960.	4.0	8
50	Observing Solvent Dynamics in Porous Carbons by Nuclear Magnetic Resonance. Johnson Matthey Technology Review, 2020, 64, 152-164.	1.0	7
51	Revealing Local Dynamics of the Protonic Conductor CsH(PO ₃ H) by Solid-State NMR Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 27830-27838.	3.1	6
52	Drug orientations within statin-loaded lipoprotein nanoparticles by ¹⁹ F solid-state NMR. Chemical Communications, 2019, 55, 13287-13290.	4.1	6
53	A Combined 25 Mg Solidâ€&tate NMR and Ab Initio DFT Approach to Probe the Local Structural Differences in Magnesium Acetate Phases Mg(CH 3 COO) 2  â‹â€‰nH 2 O (n=0, 1, 4). ChemPh 1722-1732.	ys Che m, 2	01&, 19,
54	Mesoscopic simulations of the in situ NMR spectra of porous carbon based supercapacitors: electronic structure and adsorbent reorganisation effects. Physical Chemistry Chemical Physics, 2021, 23, 15925-15934.	2.8	4

JOHN GRIFFIN

#	Article	IF	CITATIONS
55	Average orientation of a fluoroaromatic molecule in lipid bilayers from DFT-informed NMR measurements of 1H–19F dipolar couplings. Physical Chemistry Chemical Physics, 2018, 20, 18207-18215.	2.8	3
56	Chemically Prepared Li _{0.6} FePO ₄ Solid Solution as a Vehicle for Studying Phase Separation Kinetics in Li-Ion Battery Materials. Journal of Physical Chemistry C, 2020, 124, 7608-7614.	3.1	3
57	A structural investigation of organic battery anode materials by NMR crystallography. Magnetic Resonance in Chemistry, 2022, 60, 489-503.	1.9	3
58	Investigation of structure and dynamics in a photochromic molecular crystal by NMR crystallography. Magnetic Resonance in Chemistry, 2019, 57, 230-242.	1.9	2
59	Improved Understanding of Atomic Ordering in Y ₄ Si _{<i>x</i>} Al _{2–<i>x</i>} O _{9–<i>x</i>} N _{<i>x</i>} Al _{2–<i>x</i>} O _{9–<i>x</i>} N _{<i>x</i>} Al _{2–<i>x</i>} O _{9–<i>x</i>} Al _{<i>x</i>} Al _{<i>x</i>} Al _{Al_A}}}	ub> 3.1	2
60	Solidâ€state nuclear magnetic resonance study of polymorphism in tris(8â€hydroxyquinolinate)aluminium. Magnetic Resonance in Chemistry, 2021, 59, 1024-1037.	1.9	2
61	Synthesis, characterisation, and feasibility studies on the use of vanadium tellurate(<scp>vi</scp>) as a cathode material for aqueous rechargeable Zn-ion batteries. RSC Advances, 2022, 12, 12211-12218.	3.6	2
62	A gateway to understanding confined ions. Nature Nanotechnology, 2020, 15, 628-629.	31,5	1
63	19F Solid‣tate NMR and Vibrational Raman Characterization of Corticosteroid Drugâ€Lipid Membrane Interactions. ChemPlusChem, 2021, 86, 1517-1523.	2.8	1
64	New Insight into Li+ Dynamics in Lithium Bimetal Phosphate. Journal of the Electrochemical Society, 2022, 169, 010510.	2.9	1
65	Capacitive de-ionisation: An electrochemical perspective. Current Opinion in Electrochemistry, 2022, 35, 101084.	4.8	1
66	Orientation of a Diagnostic Ligand Bound to Macroscopically Aligned Amyloid-β Fibrils Determined by Solid-State NMR. Journal of Physical Chemistry Letters, 2018, 9, 6611-6615.	4.6	0