
Liyakat Hamid Mujawar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual wave \hat{I}^2 -correction spectrophotometry for trace determination and chemical speciation of As(III)/As(V) in water. Microchemical Journal, 2021, 162, 105856.	2.3	3
2	In-situ droplet assay on wax-modified paper for rapid and trace determination of Fe3+ in water. Microchemical Journal, 2021, 170, 106723.	2.3	1
3	Rapid and sensitive determination of Pb2+ in water using chromogenic reagent patterned on nail polish modified filter paper. Microchemical Journal, 2020, 153, 104448.	2.3	10
4	Rapid and sensitive microassay for trace determination and speciation of Cu2+ on commercial book-paper printed with nanolitre arrays of novel chromogenic reagent. Microchemical Journal, 2019, 146, 434-443.	2.3	10
5	Hand drawn paper-based optical assay plate for rapid and trace level determination of Ag+ in water. Sensors and Actuators B: Chemical, 2018, 258, 321-330.	4.0	18
6	Poly(methyl methacrylate)-modified cellulose fibers patterned with highly selective chromogenic reagent for rapid and trace determination of Co ²⁺ in water. Analytical Methods, 2018, 10, 4454-4462.	1.3	8
7	Potent bactericidal activity of silver nanoparticles synthesized from Cassia fistula fruit. Microbial Pathogenesis, 2017, 107, 354-360.	1.3	18
8	A miniaturized assay for sensitive determination of Cu 2+ ions on nanolitre arrayed 4-(2-pyridylazo)resorcinol (PAR) spots on polyethersulfone membrane platform. Journal of Molecular Liquids, 2017, 229, 574-582.	2.3	9
9	A versatile optical assay plate fabricated from e-waste and its application towards rapid determination of Fe ³⁺ ions in water. New Journal of Chemistry, 2017, 41, 9731-9740.	1.4	5
10	A Highly Structured 1,10-Phenanthroline Arrayed Hydrophobic Sulfone Membrane Platform for the Rapid Determination and Speciation of Fe2+/Fe3+ Ions in Water. Analytical Sciences, 2017, 33, 511-515.	0.8	14
11	Polyethersulfone membrane printed with 1-(2-pyridylazo)-2-naphthol (PAN) sensor for sensitive enrichment and rapid determination of Zn ²⁺ in water. RSC Advances, 2016, 6, 73731-73740.	1.7	12
12	Hexamethyldisilazane Modified Paper as an Ultra-sensitive Platform for Visual Detection of Hg2+, Co2+, Zn2+ and the Application to Semi-quantitative Determination of Hg2+ in Wastewater. Analytical Sciences, 2016, 32, 491-497.	0.8	29
13	One-step synthesis of silver nanoparticles using Phoenix dactylifera leaves extract and their enhanced bactericidal activity. Journal of Molecular Liquids, 2016, 223, 1114-1122.	2.3	26
14	Styrofoam modified paper as a low-cost platform for qualitative and semi-quantitative determination of Ni ²⁺ ions in wastewater. Analytical Methods, 2016, 8, 1496-1504.	1.3	16
15	Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 2016, 183, 26-41.	2.5	534
16	Influence of Pluronic F127 on the distribution and functionality of inkjet-printed biomolecules in porous nitrocellulose substrates. Talanta, 2015, 131, 541-547.	2.9	12
17	Influence of the relative humidity on the morphology of inkjet printed spots of IgG on a non-porous substrate. RSC Advances, 2014, 4, 19380-19388.	1.7	14
18	Deposition of Thin Lipid Films Prepared by Electrospraying. Food and Bioprocess Technology, 2013, 6, 3047-3055.	2.6	16

#	Article	IF	CITATIONS
19	Effect of surface wettability on microfluidic EDGE emulsification. Journal of Colloid and Interface Science, 2013, 403, 157-159.	5.0	9
20	Rapid mastitis detection assay on porous nitrocellulose membrane slides. Analytical and Bioanalytical Chemistry, 2013, 405, 7469-7476.	1.9	31
21	Distribution of Biomolecules in Porous Nitrocellulose Membrane Pads Using Confocal Laser Scanning Microscopy and High-Speed Cameras. Analytical Chemistry, 2013, 85, 3723-3729.	3.2	13
22	Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities. Analyst, The, 2013, 138, 518-524.	1.7	21
23	Influence of buffer composition on the distribution of inkjet printed protein molecules and the resulting spot morphology. Talanta, 2012, 98, 1-6.	2.9	14