
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6674390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of bio-oil from sugarcane bagasse by fast pyrolysis and removal of phenolic compounds. Biomass Conversion and Biorefinery, 2024, 14, 217-227.	4.6	3
2	Role of Ca, Cr, Ga and Gd promotor over lanthanaâ€≢irconia–supported Ni catalyst towards H ₂ â€rich syngas production through dry reforming of methane. Energy Science and Engineering, 2022, 10, 866-880.	4.0	21
3	Dry Reforming of Methane with Ni Supported on Mechanically Mixed Yttria-Zirconia Support. Catalysis Letters, 2022, 152, 3632-3641.	2.6	6
4	Hydrogen production from CO ₂ reforming of methane using zirconia supported nickel catalyst. RSC Advances, 2022, 12, 10846-10854.	3.6	11
5	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	3.7	33
6	The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts, 2022, 12, 361.	3.5	15
7	Barium-Promoted Yttria–Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO ₂ . ACS Omega, 2022, 7, 16468-16483.	3.5	25
8	Modification of CeNi0.9Zr0.1O3 Perovskite Catalyst by Partially Substituting Yttrium with Zirconia in Dry Reforming of Methane. Materials, 2022, 15, 3564.	2.9	10
9	Promotional effect of addition of ceria over yttria-zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2022, 47, 20838-20850.	7.1	38
10	Performance Study of Methane Dry Reforming on Ni/ZrO2 Catalyst. Energies, 2022, 15, 3841.	3.1	11
11	Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane. Catalysts, 2022, 12, 715.	3.5	9
12	In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental, 2021, 280, 119445.	20.2	104
13	Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species. International Journal of Hydrogen Energy, 2021, 46, 3780-3788.	7.1	30
14	Yttria Modified ZrO ₂ Supported Ni Catalysts for CO ₂ Reforming of Methane: The Role of Ce Promoter. ACS Omega, 2021, 6, 1280-1288.	3.5	29
15	Ce promoted lanthana-zirconia supported Ni catalyst system: A ternary redox system for hydrogen production. Molecular Catalysis, 2021, 504, 111498.	2.0	22
16	Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. Energies, 2021, 14, 2412.	3.1	10
17	Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 14225-14235.	7.1	39
18	Mesoporous Organo-Silica Supported Chromium Oxide Catalyst for Oxidative Dehydrogenation of Ethane to Ethylene with CO2. Catalysts, 2021, 11, 642.	3.5	6

#	Article	IF	CITATIONS
19	CO2 reforming of CH4 over Ni-catalyst supported on yttria stabilized zirconia. Journal of Saudi Chemical Society, 2021, 25, 101244.	5.2	6
20	Optimizing yttria-zirconia proportions in Ni supported catalyst system for H2 production through dry reforming of methane. Molecular Catalysis, 2021, 510, 111676.	2.0	20
21	Ceria promoted phosphateâ€zirconia supported Ni catalyst for hydrogen rich syngas production through dry reforming of methane. International Journal of Energy Research, 2021, 45, 19289-19302.	4.5	20
22	Dry Reforming of Methane Using Ni Catalyst Supported on ZrO2: The Effect of Different Sources of Zirconia. Catalysts, 2021, 11, 827.	3.5	11
23	Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 25015-25028.	7.1	44
24	Optimizing MgO Content for Boosting Î ³ -Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 2021, 11, 1233.	3.5	8
25	The effect of modifier identity on the performance of Ni-based catalyst supported on γ-Al2O3 in dry reforming of methane. Catalysis Today, 2020, 348, 236-242.	4.4	46
26	Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane. Processes, 2020, 8, 1502.	2.8	20
27	Prospective production of fructose and single cell protein from date palm waste. Electronic Journal of Biotechnology, 2020, 48, 46-52.	2.2	9
28	Impact of Ce-Loading on Ni-catalyst supported over La2O3+ZrO2 in methane reforming with CO2. International Journal of Hydrogen Energy, 2020, 45, 33343-33351.	7.1	25
29	Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Scientific Reports, 2020, 10, 13861.	3.3	42
30	Synthesis, Characterization and Catalytic Evaluation of Chromium Oxide Deposited on Titania–Silica Mesoporous Nanocomposite for the Ethane Dehydrogenation with CO2. Crystals, 2020, 10, 322.	2.2	3
31	Methane Decomposition Over ZrO2-Supported Fe and Fe–Ni Catalysts—Effects of Doping La2O3 and WO3. Frontiers in Chemistry, 2020, 8, 317.	3.6	13
32	Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts, 2020, 10, 242.	3.5	21
33	Synergetic Impact of Secondary Metal Oxides of Cr-M/MCM41 Catalyst Nanoparticles for Ethane Oxidative Dehydrogenation Using Carbon Dioxide. Crystals, 2020, 10, 7.	2.2	7
34	Dehydrogenation of Ethane to Ethylene by CO2 over Highly Dispersed Cr on Large-Pore Mesoporous Silica Catalysts. Catalysts, 2020, 10, 97.	3.5	17
35	Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia. Processes, 2020, 8, 499.	2.8	26
36	Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability. Renewable Energy, 2020, 155, 969-978.	8.9	36

#	Article	IF	CITATIONS
37	Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4. Catalysts, 2020, 10, 379.	3.5	5
38	Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes, 2020, 8, 522.	2.8	18
39	Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Applied Catalysis A: General, 2019, 584, 117114.	4.3	23
40	Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 21546-21558.	7.1	47
41	Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. Journal of Environmental Chemical Engineering, 2019, 7, 103262.	6.7	39
42	Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. International Journal of Hydrogen Energy, 2019, 44, 27784-27794.	7.1	32
43	Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts, 2019, 9, 473.	3.5	24
44	Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials, 2019, 12, 1777.	2.9	23
45	Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4. Applied Sciences (Switzerland), 2019, 9, 1926.	2.5	14
46	Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf 5	50 382 Td (Niâ
47	Kaolin-Supported Ni Catalysts for Dry Methane Reforming: Effect of Cs and Mixed K–Na Promoters. Journal of Chemical Engineering of Japan, 2019, 52, 232-238.	0.6	4
48	Combined Magnesia, Ceria and Nickel catalyst supported over Î ³ -Alumina Doped with Titania for Dry Reforming of Methane. Catalysts, 2019, 9, 188.	3.5	16
49	Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehydrogenation with carbon dioxide. Ceramics International, 2019, 45, 1125-1134.	4.8	38
50	Iridium promoted Ni o/Al ₂ O ₃ â€ZrO ₂ catalyst for dry reforming of methane. Canadian Journal of Chemical Engineering, 2018, 96, 955-960.	1.7	15
51	In Situ Regeneration of Alumina-Supported Cobalt–Iron Catalysts for Hydrogen Production by Catalytic Methane Decomposition. Catalysts, 2018, 8, 567.	3.5	9
52	A more generalized kinetic model for binary substrates fermentations. Process Biochemistry, 2018, 75, 31-38.	3.7	10
53	Evaluation of Co-Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Applied Catalysis A: General, 2018, 567, 102-111.	4.3	42
54	Influence of promoted 5%Ni/MCM-41 catalysts on hydrogen yield in CO ₂ reforming of CH ₄ . International Journal of Energy Research, 2018, 42, 4120-4130.	4.5	21

#	Article	IF	CITATIONS
55	Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts, 2018, 8, 229.	3.5	22
56	Kinetic modeling of the simultaneous production of ethanol and fructose by Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 2018, 34, 1-8.	2.2	14
57	Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde. Journal of Environmental Chemical Engineering, 2017, 5, 1657-1665.	6.7	54
58	A green process for simultaneous production of fructose and ethanol via selective fermentation. Journal of Cleaner Production, 2017, 162, 420-426.	9.3	10
59	Enhanced sulfur removal by a tuned composite structure of Cu, Zn, Fe, and Al elements. Journal of Hazardous Materials, 2017, 331, 273-279.	12.4	10
60	Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study. Journal of the Serbian Chemical Society, 2017, 82, 921-931.	0.8	9
61	Suitability of Titania and Magnesia as Support for Methane Decomposition Catalyst Using Iron as Active Materials. Journal of Chemical Engineering of Japan, 2016, 49, 552-562.	0.6	2
62	Hydrogen production by catalytic methane decomposition over Ni, Co, and Ni-Co/Al ₂ O ₃ catalyst. Petroleum Science and Technology, 2016, 34, 1617-1623.	1.5	11
63	Production of hydrogen from methane over lanthanum supported bimetallic catalysts. International Journal of Hydrogen Energy, 2016, 41, 8193-8198.	7.1	28
64	La 2 O 3 supported bimetallic catalysts for the production of hydrogen and carbon nanomaterials from methane. International Journal of Hydrogen Energy, 2016, 41, 976-983.	7.1	36
65	Methane decomposition over Fe supported catalysts for hydrogen and nano carbon yield. Catalysis for Sustainable Energy, 2015, 2, 71-82.	0.7	14
66	The Effect of Sc Promoter on the Performance of Co/ <scp>TiO₂–P25</scp> Catalyst in Dry Reforming of Methane. Bulletin of the Korean Chemical Society, 2015, 36, 2081-2088.	1.9	20
67	Production of Synthesis Gas via Dry Reforming of Methane over Coâ€Based Catalysts: Effect on H ₂ /CO Ratio and Carbon Deposition. Chemical Engineering and Technology, 2015, 38, 1397-1405.	1.5	15
68	Production of hydrogen and carbon nanofibers from methane over Ni–Co–Al catalysts. International Journal of Hydrogen Energy, 2015, 40, 1774-1781.	7.1	53
69	Methane decomposition over iron catalyst for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7593-7600.	7.1	136
70	Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 2015, 40, 6818-6826.	7.1	85
71	Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract. Chemical Engineering Communications, 2015, 202, 1618-1627.	2.6	25
72	Reforming of Methane by CO ₂ over Bimetallic Ni-Mn/γ-Al ₂ O ₃ Catalyst. Chinese Journal of Chemical Physics, 2014, 27, 214-220.	1.3	13

#	Article	IF	CITATIONS
73	Effect of Nanoâ€support and Type of Active Metal on Reforming of CH ₄ with CO ₂ . Journal of the Chinese Chemical Society, 2014, 61, 461-470.	1.4	9
74	Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Processing Technology, 2014, 122, 141-152.	7.2	60
75	Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. International Journal of Hydrogen Energy, 2014, 39, 17009-17023.	7.1	50
76	Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chinese Journal of Catalysis, 2013, 34, 764-768.	14.0	60
77	Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide. Journal of Hazardous Materials, 2013, 254-255, 221-227.	12.4	19
78	Effect of Sr loading on oxydehydrogenation of propane to propylene over Al2O3-supported V-Mo catalysts. Journal of Energy Chemistry, 2013, 22, 778-782.	12.9	9
79	CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts. Bulletin of the Chemical Society of Japan, 2013, 86, 742-748.	3.2	42
80	Oxidative Dehydrogenation of Propane over Supported Nickel–Molybdenum–Oxide-Based Catalysts. Journal of Chemical Engineering of Japan, 2013, 46, 389-395.	0.6	3
81	Kinetics of oxidehydrogenation of propane over alumina-supported Sr–V–Mo catalysts. Catalysis Communications, 2012, 26, 98-102.	3.3	18
82	Oxidehydrogenation of propane to propylene over Sr–V–Mo catalysts: Effects of reaction temperature and space time. Journal of Industrial and Engineering Chemistry, 2012, 18, 1153-1156.	5.8	13
83	Effects of Selected Promoters on Ni/Y-Al2O3 Catalyst Performance in Methane Dry Reforming. Chinese Journal of Catalysis, 2011, 32, 1604-1609.	14.0	69
84	Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr–V–Mo catalysts. Catalysis Communications, 2011, 14, 107-110.	3.3	17
85	Activity and Carbon Formation of a Low Ni-Loading Alumina-Supported Catalyst. Journal of Chemical Engineering of Japan, 2011, 44, 328-335.	0.6	8