
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6674390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane decomposition over iron catalyst for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7593-7600.	7.1	136
2	In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental, 2021, 280, 119445.	20.2	104
3	Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 2015, 40, 6818-6826.	7.1	85
4	Effects of Selected Promoters on Ni/Y-Al2O3 Catalyst Performance in Methane Dry Reforming. Chinese Journal of Catalysis, 2011, 32, 1604-1609.	14.0	69
5	Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chinese Journal of Catalysis, 2013, 34, 764-768.	14.0	60
6	Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Processing Technology, 2014, 122, 141-152.	7.2	60
7	Silver nano-particles deposited on bamboo-based activated carbon for removal of formaldehyde. Journal of Environmental Chemical Engineering, 2017, 5, 1657-1665.	6.7	54
8	Production of hydrogen and carbon nanofibers from methane over Ni–Co–Al catalysts. International Journal of Hydrogen Energy, 2015, 40, 1774-1781.	7.1	53
9	Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. International Journal of Hydrogen Energy, 2014, 39, 17009-17023.	7.1	50
10	Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 21546-21558.	7.1	47
11	The effect of modifier identity on the performance of Ni-based catalyst supported on γ-Al2O3 in dry reforming of methane. Catalysis Today, 2020, 348, 236-242.	4.4	46
12	Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 25015-25028.	7.1	44
13	CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts. Bulletin of the Chemical Society of Japan, 2013, 86, 742-748.	3.2	42
14	Evaluation of Co-Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Applied Catalysis A: General, 2018, 567, 102-111.	4.3	42
15	Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Scientific Reports, 2020, 10, 13861.	3.3	42
16	Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. Journal of Environmental Chemical Engineering, 2019, 7, 103262.	6.7	39
17	Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 14225-14235.	7.1	39
18	Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehydrogenation with carbon dioxide. Ceramics International, 2019, 45, 1125-1134.	4.8	38

#	Article	IF	CITATIONS
19	Promotional effect of addition of ceria over yttria-zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2022, 47, 20838-20850.	7.1	38
20	La 2 O 3 supported bimetallic catalysts for the production of hydrogen and carbon nanomaterials from methane. International Journal of Hydrogen Energy, 2016, 41, 976-983.	7.1	36
21	Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability. Renewable Energy, 2020, 155, 969-978.	8.9	36
22	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	3.7	33
23	Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. International Journal of Hydrogen Energy, 2019, 44, 27784-27794.	7.1	32
24	Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species. International Journal of Hydrogen Energy, 2021, 46, 3780-3788.	7.1	30
25	Yttria Modified ZrO ₂ Supported Ni Catalysts for CO ₂ Reforming of Methane: The Role of Ce Promoter. ACS Omega, 2021, 6, 1280-1288.	3.5	29
26	Production of hydrogen from methane over lanthanum supported bimetallic catalysts. International Journal of Hydrogen Energy, 2016, 41, 8193-8198.	7.1	28
27	Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia. Processes, 2020, 8, 499.	2.8	26
28	Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract. Chemical Engineering Communications, 2015, 202, 1618-1627.	2.6	25
29	Impact of Ce-Loading on Ni-catalyst supported over La2O3+ZrO2 in methane reforming with CO2. International Journal of Hydrogen Energy, 2020, 45, 33343-33351.	7.1	25
30	Barium-Promoted Yttria–Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO ₂ . ACS Omega, 2022, 7, 16468-16483.	3.5	25
31	Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts, 2019, 9, 473.	3.5	24
32	Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Applied Catalysis A: General, 2019, 584, 117114.	4.3	23
33	Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials, 2019, 12, 1777.	2.9	23
34	Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts, 2018, 8, 229.	3.5	22
35	Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and) Tj ETQq1 1 0.784314 rgBT	/Qverlock	10 Tf 50 1
36	Ce promoted lanthana-zirconia supported Ni catalyst system: A ternary redox system for hydrogen	2.0	22

Ce promoted lanthana-zirconia supported Ni catalyst production. Molecular Catalysis, 2021, 504, 111498.

2.0 22

#	Article	IF	CITATIONS
37	Influence of promoted 5%Ni/MCM-41 catalysts on hydrogen yield in CO ₂ reforming of CH ₄ . International Journal of Energy Research, 2018, 42, 4120-4130.	4.5	21
38	Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts, 2020, 10, 242.	3.5	21
39	Role of Ca, Cr, Ga and Gd promotor over lanthanaâ€zirconia–supported Ni catalyst towards H ₂ â€rich syngas production through dry reforming of methane. Energy Science and Engineering, 2022, 10, 866-880.	4.0	21
40	The Effect of Sc Promoter on the Performance of Co/ <scp>TiO₂–P25</scp> Catalyst in Dry Reforming of Methane. Bulletin of the Korean Chemical Society, 2015, 36, 2081-2088.	1.9	20
41	Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane. Processes, 2020, 8, 1502.	2.8	20
42	Optimizing yttria-zirconia proportions in Ni supported catalyst system for H2 production through dry reforming of methane. Molecular Catalysis, 2021, 510, 111676.	2.0	20
43	Ceria promoted phosphateâ€zirconia supported Ni catalyst for hydrogen rich syngas production through dry reforming of methane. International Journal of Energy Research, 2021, 45, 19289-19302.	4.5	20
44	Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide. Journal of Hazardous Materials, 2013, 254-255, 221-227.	12.4	19
45	Kinetics of oxidehydrogenation of propane over alumina-supported Sr–V–Mo catalysts. Catalysis Communications, 2012, 26, 98-102.	3.3	18
46	Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes, 2020, 8, 522.	2.8	18
47	Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr–V–Mo catalysts. Catalysis Communications, 2011, 14, 107-110.	3.3	17
48	Dehydrogenation of Ethane to Ethylene by CO2 over Highly Dispersed Cr on Large-Pore Mesoporous Silica Catalysts. Catalysts, 2020, 10, 97.	3.5	17
49	Combined Magnesia, Ceria and Nickel catalyst supported over Î ³ -Alumina Doped with Titania for Dry Reforming of Methane. Catalysts, 2019, 9, 188.	3.5	16
50	Production of Synthesis Gas via Dry Reforming of Methane over Coâ€Based Catalysts: Effect on H ₂ /CO Ratio and Carbon Deposition. Chemical Engineering and Technology, 2015, 38, 1397-1405.	1.5	15
51	Iridium promoted Niâ€Co/Al ₂ O ₃ â€ZrO ₂ catalyst for dry reforming of methane. Canadian Journal of Chemical Engineering, 2018, 96, 955-960.	1.7	15
52	The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts, 2022, 12, 361.	3.5	15
53	Methane decomposition over Fe supported catalysts for hydrogen and nano carbon yield. Catalysis for Sustainable Energy, 2015, 2, 71-82.	0.7	14
54	Kinetic modeling of the simultaneous production of ethanol and fructose by Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 2018, 34, 1-8.	2.2	14

#	Article	IF	CITATIONS
55	Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4. Applied Sciences (Switzerland), 2019, 9, 1926.	2.5	14
56	Oxidehydrogenation of propane to propylene over Sr–V–Mo catalysts: Effects of reaction temperature and space time. Journal of Industrial and Engineering Chemistry, 2012, 18, 1153-1156.	5.8	13
57	Reforming of Methane by CO ₂ over Bimetallic Ni-Mn/γ-Al ₂ O ₃ Catalyst. Chinese Journal of Chemical Physics, 2014, 27, 214-220.	1.3	13
58	Methane Decomposition Over ZrO2-Supported Fe and Fe–Ni Catalysts—Effects of Doping La2O3 and WO3. Frontiers in Chemistry, 2020, 8, 317.	3.6	13
59	Hydrogen production by catalytic methane decomposition over Ni, Co, and Ni-Co/Al ₂ O ₃ catalyst. Petroleum Science and Technology, 2016, 34, 1617-1623.	1.5	11
60	Dry Reforming of Methane Using Ni Catalyst Supported on ZrO2: The Effect of Different Sources of Zirconia. Catalysts, 2021, 11, 827.	3.5	11
61	Hydrogen production from CO ₂ reforming of methane using zirconia supported nickel catalyst. RSC Advances, 2022, 12, 10846-10854.	3.6	11
62	Performance Study of Methane Dry Reforming on Ni/ZrO2 Catalyst. Energies, 2022, 15, 3841.	3.1	11
63	A green process for simultaneous production of fructose and ethanol via selective fermentation. Journal of Cleaner Production, 2017, 162, 420-426.	9.3	10
64	Enhanced sulfur removal by a tuned composite structure of Cu, Zn, Fe, and Al elements. Journal of Hazardous Materials, 2017, 331, 273-279.	12.4	10
65	A more generalized kinetic model for binary substrates fermentations. Process Biochemistry, 2018, 75, 31-38.	3.7	10
66	Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. Energies, 2021, 14, 2412.	3.1	10
67	Modification of CeNi0.9Zr0.1O3 Perovskite Catalyst by Partially Substituting Yttrium with Zirconia in Dry Reforming of Methane. Materials, 2022, 15, 3564.	2.9	10
68	Effect of Sr loading on oxydehydrogenation of propane to propylene over Al2O3-supported V-Mo catalysts. Journal of Energy Chemistry, 2013, 22, 778-782.	12.9	9
69	Effect of Nanoâ€support and Type of Active Metal on Reforming of CH ₄ with CO ₂ . Journal of the Chinese Chemical Society, 2014, 61, 461-470.	1.4	9
70	In Situ Regeneration of Alumina-Supported Cobalt–Iron Catalysts for Hydrogen Production by Catalytic Methane Decomposition. Catalysts, 2018, 8, 567.	3.5	9
71	Prospective production of fructose and single cell protein from date palm waste. Electronic Journal of Biotechnology, 2020, 48, 46-52.	2.2	9
72	Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study. Journal of the Serbian Chemical Society, 2017, 82, 921-931.	0.8	9

#	Article	IF	CITATIONS
73	Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane. Catalysts, 2022, 12, 715.	3.5	9
74	Activity and Carbon Formation of a Low Ni-Loading Alumina-Supported Catalyst. Journal of Chemical Engineering of Japan, 2011, 44, 328-335.	0.6	8
75	Optimizing MgO Content for Boosting Î ³ -Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 2021, 11, 1233.	3.5	8
76	Synergetic Impact of Secondary Metal Oxides of Cr-M/MCM41 Catalyst Nanoparticles for Ethane Oxidative Dehydrogenation Using Carbon Dioxide. Crystals, 2020, 10, 7.	2.2	7
77	Mesoporous Organo-Silica Supported Chromium Oxide Catalyst for Oxidative Dehydrogenation of Ethane to Ethylene with CO2. Catalysts, 2021, 11, 642.	3.5	6
78	CO2 reforming of CH4 over Ni-catalyst supported on yttria stabilized zirconia. Journal of Saudi Chemical Society, 2021, 25, 101244.	5.2	6
79	Dry Reforming of Methane with Ni Supported on Mechanically Mixed Yttria-Zirconia Support. Catalysis Letters, 2022, 152, 3632-3641.	2.6	6
80	Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4. Catalysts, 2020, 10, 379.	3.5	5
81	Kaolin-Supported Ni Catalysts for Dry Methane Reforming: Effect of Cs and Mixed K–Na Promoters. Journal of Chemical Engineering of Japan, 2019, 52, 232-238.	0.6	4
82	Oxidative Dehydrogenation of Propane over Supported Nickel–Molybdenum–Oxide-Based Catalysts. Journal of Chemical Engineering of Japan, 2013, 46, 389-395.	0.6	3
83	Synthesis, Characterization and Catalytic Evaluation of Chromium Oxide Deposited on Titania–Silica Mesoporous Nanocomposite for the Ethane Dehydrogenation with CO2. Crystals, 2020, 10, 322.	2.2	3
84	Production of bio-oil from sugarcane bagasse by fast pyrolysis and removal of phenolic compounds. Biomass Conversion and Biorefinery, 2024, 14, 217-227.	4.6	3
85	Suitability of Titania and Magnesia as Support for Methane Decomposition Catalyst Using Iron as Active Materials. Journal of Chemical Engineering of Japan, 2016, 49, 552-562.	0.6	2