Shunichi Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6673358/publications.pdf

Version: 2024-02-01

44 papers 6,786 citations

30 h-index 253896 43 g-index

47 all docs

47 docs citations

times ranked

47

6607 citing authors

#	Article	IF	Citations
1	Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus. ELife, 2021, 10, .	2.8	29
2	Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs, 2021, 40, 1297-1306.	0.9	9
3	Moonrise timing is key for synchronized spawning in coral <i>Dipsastraea speciosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
4	Overexpression of BUNDLE SHEATH DEFECTIVE 2 improves the efficiency of photosynthesis and growth in <i>Arabidopsis</i> . Plant Journal, 2020, 102, 129-137.	2.8	13
5	Loss of symbiont infectivity following thermal stress can be a factor limiting recovery from bleaching in cnidarians. ISME Journal, 2020, 14, 3149-3152.	4.4	7
6	Arabidopsis BSD2 reveals a novel redox regulation of Rubisco physiology in vivo. Plant Signaling and Behavior, 2020, 15, 1740873.	1.2	7
7	Green fluorescence from cnidarian hosts attracts symbiotic algae. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2118-2123.	3.3	48
8	Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native <i>Symbiodinium</i> species. Biology Open, 2019, 8, .	0.6	19
9	Isolation of uracil auxotroph mutants of coral symbiont alga for symbiosis studies. Scientific Reports, 2018, 8, 3237.	1.6	5
10	Microplastics disturb the anthozoan-algae symbiotic relationship. Marine Pollution Bulletin, 2018, 135, 83-89.	2.3	76
11	Acceptable symbiont cell size differs among cnidarian species and may limit symbiont diversity. ISME Journal, 2017, 11, 1702-1712.	4.4	53
12	Estimation of the Cyclic Electron Flux around Photosystem I in Leaf Discs., 2017,, 265-275.		0
13	Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nature Plants, 2016, 2, 16012.	4.7	182
14	Mitochondrial Alternative Pathway-Associated Photoprotection of Photosystem II is Related to the Photorespiratory Pathway. Plant and Cell Physiology, 2016, 57, pcw036.	1.5	40
15	Heat Induction of Cyclic Electron Flow around Photosystem I in the Symbiotic Dinoflagellate <i>Symbiodinium</i> . Plant Physiology, 2016, 171, 522-529.	2.3	42
16	Photodamage to the oxygen evolving complex of photosystem II by visible light. Scientific Reports, 2015, 5, 16363.	1.6	77
17	The ReFuGe 2020 Consortium—using "omics―approaches to explore the adaptability and resilience of coral holobionts to environmental change. Frontiers in Marine Science, 2015, 2, .	1.2	24
18	Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis. Frontiers in Plant Science, 2015, 6, 758.	1.7	34

#	Article	IF	CITATIONS
19	Novel Characteristics of Photodamage to PSII in a High-Light-Sensitive Symbiodinium Phylotype. Plant and Cell Physiology, 2015, 56, 1162-1171.	1.5	17
20	Photosystem II recovery in the presence and absence of chloroplast protein repair in the symbionts of corals exposed to bleaching conditions. Coral Reefs, 2014, 33, 1101-1111.	0.9	8
21	Gymnosperms Have Increased Capacity for Electron Leakage to Oxygen (Mehler and PTOX reactions) in Photosynthesis Compared with Angiosperms. Plant and Cell Physiology, 2013, 54, 1152-1163.	1.5	69
22	Estimation of the steady-state cyclic electron flux around PSI in spinach leaf discs in white light, CO2-enriched air and other varied conditions. Functional Plant Biology, 2013, 40, 1018.	1.1	40
23	Thermal Acclimation of the Symbiotic Alga <i>Symbiodinium</i> spp. Alleviates Photobleaching under Heat Stress Â. Plant Physiology, 2012, 161, 477-485.	2.3	51
24	VARIABILITY IN THE PRIMARY SITE OF PHOTOSYNTHETIC DAMAGE IN <i>SYMBIODINIUM</i> SP. (DINOPHYCEAE) EXPOSED TO THERMAL STRESS ¹ . Journal of Phycology, 2012, 48, 117-126.	1.0	49
25	Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 2011, 16, 53-60.	4.3	823
26	The Roles of ATP Synthase and the Cytochrome $\langle i \rangle b \langle i \rangle \hat{A} b \langle i \rangle f \langle i \rangle$ Complexes in Limiting Chloroplast Electron Transport and Determining Photosynthetic Capacity \hat{A} \hat{A} . Plant Physiology, 2011, 155, 956-962.	2.3	144
27	The Solar Action Spectrum of Photosystem II Damage Â. Plant Physiology, 2010, 153, 988-993.	2.3	124
28	Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured <i>Symbiodinium</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3237-3242.	3.3	157
29	How Does Cyclic Electron Flow Alleviate Photoinhibition in Arabidopsis? Â Â. Plant Physiology, 2009, 149, 1560-1567.	2.3	227
30	Chlorophyll fluorescence screening of Arabidopsis thaliana for CO2 sensitive photorespiration and photoinhibition mutants. Functional Plant Biology, 2009, 36, 867.	1.1	31
31	Coral bleaching: the role of the host. Trends in Ecology and Evolution, 2009, 24, 16-20.	4.2	461
32	How do environmental stresses accelerate photoinhibition?. Trends in Plant Science, 2008, 13, 178-182.	4.3	935
33	Heat stress causes inhibition of the <i>de novo</i> synthesis of antenna proteins and photobleaching in cultured <i>Symbiodinium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4203-4208.	3.3	127
34	Impairment of the Photorespiratory Pathway Accelerates Photoinhibition of Photosystem II by Suppression of Repair But Not Acceleration of Damage Processes in Arabidopsis. Plant Physiology, 2007, 144, 487-494.	2.3	187
35	Photoinhibition of photosystem II under environmental stress. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 414-421.	0.5	1,231
36	Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 198-205.	0.5	81

3

#	Article	IF	CITATION
37	Systematic Analysis of the Relation of Electron Transport and ATP Synthesis to the Photodamage and Repair of Photosystem II in Synechocystis. Plant Physiology, 2005, 137, 263-273.	2.3	145
38	Two-Step Mechanism of Photodamage to Photosystem II:  Step 1 Occurs at the Oxygen-Evolving Complex and Step 2 Occurs at the Photochemical Reaction Center. Biochemistry, 2005, 44, 8494-8499.	1.2	309
39	Interruption of the Calvin cycle inhibits the repair of Photosystem II from photodamage. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 352-361.	0.5	139
40	Repair Machinery of Symbiotic Photosynthesis as the Primary Target of Heat Stress for Reef-Building Corals. Plant and Cell Physiology, 2004, 45, 251-255.	1.5	242
41	Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Letters, 2002, 512, 145-148.	1.3	108
42	High-susceptibility of photosynthesis to photoinhibition in the tropical plant Ficus microcarpa L. f. cv. Golden Leaves. BMC Plant Biology, 2002, 2, 2.	1.6	21
43	An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends in Plant Science, 1999, 4, 128-129.	4.3	338
44	The Tropical Fig Ficus microcarpa L. f. cv. Golden Leaves Lacks Heat-Stable Dehydroascorbate Reductase Activity. Plant and Cell Physiology, 1999, 40, 640-646.	1.5	25