Fatemeh Kalalinia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6673239/publications.pdf Version: 2024-02-01

ΕΛΤΕΜΕΗ ΚΛΙΛΙΙΝΙΛ

#	Article	IF	CITATIONS
1	Effect of thymoquinone-loaded lipid–polymer nanoparticles as an oral delivery system on anticancer efficiency of doxorubicin. Journal of Nanostructure in Chemistry, 2022, 12, 33-44.	9.1	17
2	Evaluation of the Efficiency of Chitosan Hydrogel Containing Berberis integerrima Root Extract on a Full-Thickness Skin Wound in a Rat Model. Macromolecular Research, 2022, 30, 527-535.	2.4	3
3	Bone Regeneration by Homeopathic Symphytum officinale. Regenerative Engineering and Translational Medicine, 2021, 7, 548-555.	2.9	1
4	Evaluation of the effect of thymoquinone in <scp>d</scp> â€galactoseâ€induced memory impairments in rats: Role of <scp>MAPK</scp> , oxidative stress, and neuroinflammation pathways and telomere length. Phytotherapy Research, 2021, 35, 2252-2266.	5.8	15
5	Improving anti-tumour efficacy of PEGylated liposomal doxorubicin by dual targeting of tumour cells and tumour endothelial cells using anti-p32 CGKRK peptide. Journal of Drug Targeting, 2021, 29, 617-630.	4.4	25
6	671 Burn Wound Healing Effect of Bromelain-loaded Chitosan Nanofibers. Journal of Burn Care and Research, 2021, 42, S192-S192.	0.4	2
7	Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. International Journal of Biological Macromolecules, 2021, 177, 100-110.	7.5	66
8	Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and In Vivo Studies. ACS Biomaterials Science and Engineering, 2021, 7, 3886-3897.	5.2	61
9	Effects of co-administration of arsenic trioxide and Schiff base oxovanadium complex on the induction of apoptosis in acute promyelocytic leukemia cells. BioMetals, 2021, 34, 1067-1080.	4.1	2
10	Recent advances in optimization of liver decellularization procedures used for liver regeneration. Life Sciences, 2021, 281, 119801.	4.3	10
11	Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells. Drug Development and Industrial Pharmacy, 2021, , 1-22.	2.0	0
12	Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways Iranian Journal of Basic Medical Sciences, 2021, 24, 1292-1300.	1.0	4
13	Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. International Journal of Biological Macromolecules, 2020, 162, 645-656.	7.5	99
14	Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotechnology and Applied Biochemistry, 2020, 67, 430-441.	3.1	15
15	Crocin Increases Gastric Cancer Cells' Sensitivity to Doxorubicin. Asian Pacific Journal of Cancer Prevention, 2020, 21, 1959-1967.	1.2	13
16	Topical green tea formulation with anti-hemorrhagic and antibacterial effects. Iranian Journal of Basic Medical Sciences, 2020, 23, 1085-1090.	1.0	2
17	Evaluation the interaction of ABC multidrug transporter MDR1 with thymoquinone: substrate or inhibitor?. Iranian Journal of Basic Medical Sciences, 2020, 23, 1360-1366.	1.0	0
18	Synthesis, in silico and in vitro studies of new 1,4-dihydropiridine derivatives for antitumor and P-glycoprotein inhibitory activity. Bioorganic Chemistry, 2019, 91, 103156.	4.1	14

Fatemeh Kalalinia

#	Article	IF	CITATIONS
19	Encapsulation of crocetin into poly (lactic-co-glycolic acid) nanoparticles overcomes drug resistance in human ovarian cisplatin-resistant carcinoma cell line (A2780-RCIS). Molecular Biology Reports, 2019, 46, 6525-6532.	2.3	10
20	Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sciences, 2019, 229, 57-66.	4.3	107
21	ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. Journal of Biosciences, 2019, 44, 1.	1.1	17
22	Bone defect healing is induced by collagen sponge/polyglycolic acid. Journal of Materials Science: Materials in Medicine, 2019, 30, 33.	3.6	49
23	ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. Journal of Biosciences, 2019, 44, .	1.1	2
24	Tetrac-decorated chitosan-coated PLGA nanoparticles as a new platform for targeted delivery of SN38. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1003-1014.	2.8	25
25	Telomere shortening associated with increased levels of oxidative stress in sulfur mustard-exposed Iranian veterans. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 834, 1-5.	1.7	12
26	Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sciences, 2018, 208, 262-267.	4.3	37
27	Design, Synthesis, and Biological Evaluation of New Azole Derivatives as Potent Aromatase Inhibitors with Potential Effects against Breast Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 1016-1024.	1.7	8
28	The effects of crocetin, extracted from saffron, in chemotherapy against the incidence of multiple drug resistance phenotype. Iranian Journal of Basic Medical Sciences, 2018, 21, 1192-1197.	1.0	7
29	Anticancer Properties of Solamargine: A Systematic Review. Phytotherapy Research, 2017, 31, 858-870.	5.8	46
30	Long bone mesenchymal stem cells (Lb-MSCs): clinically reliable cells for osteo-diseases. Cell and Tissue Banking, 2017, 18, 489-500.	1.1	20
31	Unexpected Lower Expression of Oncoprotein Gankyrin in Drug Resistant ABCG2 Overexpressing Breast Cancer Cell Lines. Asian Pacific Journal of Cancer Prevention, 2017, 18, 3413-3418.	1.2	8
32	PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. Journal of Biomedical Materials Research - Part A, 2016, 104, 2020-2028.	4.0	55
33	ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. Journal of Biosciences, 2016, 41, 313-324.	1.1	43
34	Crocin suppresses multidrug resistance in MRP overexpressing ovarian cancer cell line. DARU, Journal of Pharmaceutical Sciences, 2016, 24, 17.	2.0	36
35	Application of encapsulation technology in stem cell therapy. Life Sciences, 2015, 143, 139-146.	4.3	47
36	Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicology in Vitro, 2015, 29, 893-900.	2.4	62

Fatemeh Kalalinia

#	ARTICLE	IF	CITATIONS
37	Celecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines. Iranian Journal of Pharmaceutical Research, 2014, 13, 1393-401.	0.5	16
38	Pro-inflammatory cytokines interleukin-1 beta, interleukin 6, and tumor necrosis factor-alpha alter the expression and function of ABCG2 in cervix and gastric cancer cells. Molecular and Cellular Biochemistry, 2012, 363, 385-393.	3.1	39
39	Phorbol Ester TPA Modulates Chemoresistance in the Drug Sensitive Breast Cancer Cell Line MCF-7 by Inducing Expression of Drug Efflux Transporter ABCG2. Asian Pacific Journal of Cancer Prevention, 2012, 13, 2979-2984.	1.2	14
40	Farnesiferol A from <i>Ferula persica</i> and Galbanic Acid from <i>Ferula szowitsiana</i> Inhibit P-Glycoprotein-Mediated Rhodamine Efflux in Breast Cancer Cell Lines. Planta Medica, 2011, 77, 1590-1593.	1.3	36
41	Tumor Necrosis Factor Alpha Induces Stronger Cytotoxicity in ABCG2-Overexpressing Resistant Breast Cancer Cells Compared with Their Drug-Sensitive Parental Line. DNA and Cell Biology, 2011, 30, 413-418.	1.9	14
42	Investigating the enhancement of cisplatin cytotoxicity on 5637 cells by combination with mogoltacin. Toxicology in Vitro, 2011, 25, 469-474.	2.4	19
43	MCF-7 Breast Cancer Cell Line, a Model for the Study of the Association Between Inflammation and ABCG2-Mediated Multi Drug Resistance. , 2011, , .		0
44	Potential role of cyclooxygenase-2 on the regulation of the drug efflux transporter ABCG2 in breast cancer cell lines. Journal of Cancer Research and Clinical Oncology, 2011, 137, 321-330.	2.5	28
45	Inhibition of tumor cells growth and stimulation of lymphocytes by <i>Euphorbia</i> species. Immunopharmacology and Immunotoxicology, 2011, 33, 34-42.	2.4	21
46	Evaluation of indomethacin and dexamethasone effects on BCRP-mediated drug resistance in MCF-7 parental and resistant cell lines. Drug and Chemical Toxicology, 2010, 33, 113-119.	2.3	25
47	Dexamethasone Downregulates BCRP mRNA and Protein Expression in Breast Cancer Cell Lines. Oncology Research, 2009, 18, 9-15.	1.5	26
48	Chemical Composition, Moderate <i>In Vitro</i> Antibacterial and Antifungal Activity of the Essential Oil of <i>Pistacia vera</i> L. and it's Major Constituents. Journal of Essential Oil-bearing Plants: JEOP, 2008, 11, 376-383.	1.9	4