Gerald Klanert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6673044/publications.pdf

Version: 2024-02-01

687363 713466 23 450 13 21 h-index citations g-index papers 25 25 25 524 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorescence microscopy-based quantitation of GLUT4 translocation. Methods and Applications in Fluorescence, 2022, 10, 022001.	2.3	4
2	How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnology Advances, 2022, 56, 107924.	11.7	9
3	Subcloning induces changes in the DNAâ€methylation pattern of outgrowing Chinese hamster ovary cell colonies. Biotechnology Journal, 2021, 16, e2000350.	3.5	11
4	Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells. Metabolic Engineering, 2021, 66, 268-282.	7.0	17
5	A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00649.	4.4	5
6	Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical. ELife, $2021,10,10$	6.0	7
7	mRNA Transfection into CHOâ€Cells Reveals Production Bottlenecks. Biotechnology Journal, 2020, 15, 1900198.	3.5	9
8	Systematic use of synthetic 5′-UTR RNA structures to tune protein translation improves yield and quality of complex proteins in mammalian cell factories. Nucleic Acids Research, 2020, 48, e119-e119.	14.5	20
9	Random epigenetic modulation of CHO cells by repeated knockdown of DNA methyltransferases increases population diversity and enables sorting of cells with higher production capacities. Biotechnology and Bioengineering, 2020, 117, 3435-3447.	3.3	15
10	Directed evolution approach to enhance efficiency and speed of outgrowth during single cell subcloning of Chinese Hamster Ovary cells. Computational and Structural Biotechnology Journal, 2020, 18, 1320-1329.	4.1	15
11	A cross-species whole genome siRNA screen in suspension-cultured Chinese hamster ovary cells identifies novel engineering targets. Scientific Reports, 2019, 9, 8689.	3.3	21
12	Transient manipulation of the expression level of selected growth rate correlating microRNAs does not increase growth rate in CHO-K1 cells. Journal of Biotechnology, 2019, 295, 63-70.	3.8	2
13	Epigenetic regulation of gene expression in Chinese Hamster Ovary cells in response to the changing environment of a batch culture. Biotechnology and Bioengineering, 2019, 116, 677-692.	3.3	37
14	OPP Labeling Enables Total Protein Synthesis Quantification in CHO Production Cell Lines at the Singleâ€Cell Level. Biotechnology Journal, 2018, 13, e1700492.	3.5	23
15	A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells. Metabolic Engineering, 2018, 48, 72-81.	7.0	16
16	CRISPRâ€Based Targeted Epigenetic Editing Enables Gene Expression Modulation of the Silenced Betaâ€Galactoside Alphaâ€2,6‧ialyltransferase 1 in CHO Cells. Biotechnology Journal, 2018, 13, e1700217.	3 . 5	50
17	The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary cells. Journal of Biotechnology, 2018, 282, 101-110.	3.8	32
18	Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray. Journal of Biotechnology, 2017, 257, 13-21.	3.8	25

#	Article	IF	CITATIONS
19	A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. Journal of Biotechnology, 2016, 235, 150-161.	3 . 8	16
20	Annotation of additional evolutionary conserved microRNAs in CHO cells from updated genomic data. Biotechnology and Bioengineering, 2015, 112, 1488-1493.	3.3	13
21	Endogenous microRNA clusters outperform chimeric sequence clusters in Chinese hamster ovary cells. Biotechnology Journal, 2014, 9, 538-544.	3.5	20
22	Stable overexpression of miR-17 enhances recombinant protein production of CHO cells. Journal of Biotechnology, 2014, 175, 38-44.	3.8	67
23	Analysis of microRNA transcription and post-transcriptional processing by Dicer in the context of CHO cell proliferation. Journal of Biotechnology, 2014, 190, 76-84.	3.8	14