
Maria Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/667297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-1β and TNFα Differentially Influence NF-κB Activity and FasL-Induced Apoptosis in Primary Murine Hepatocytes During LPS-Induced Inflammation. Frontiers in Physiology, 2019, 10, 117.	1.3	47
2	Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metabolism and Disposition, 2018, 46, 326-335.	1.7	29
3	β-Defensin 1 Is Prominent in the Liver and Induced During Cholestasis by Bilirubin and Bile Acids via Farnesoid X Receptor and Constitutive Androstane Receptor. Frontiers in Immunology, 2018, 9, 1735.	2.2	12
4	BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut, 2017, 66, 939-954.	6.1	107
5	TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget, 2016, 7, 19499-19518.	0.8	52
6	Introduction of shRNAs, miRNAs, or AntagomiRs into Primary Human Liver Cells Through Lentiviral Vectors. Methods in Molecular Biology, 2016, 1448, 77-84.	0.4	0
7	Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1218-1227.	0.9	67
8	Influence of Birch Bark Triterpenes on Keratinocytes and Fibroblasts from Diabetic and Nondiabetic Donors. Journal of Natural Products, 2016, 79, 1112-1123.	1.5	15
9	Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling. PLoS Computational Biology, 2016, 12, e1004431.	1.5	27
10	Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Computational Biology, 2016, 12, e1005018.	1.5	40
11	Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways. BMC Genomics, 2015, 16, 790.	1.2	7
12	Pathobiochemical signatures of cholestatic liver disease in bile duct ligated mice. BMC Systems Biology, 2015, 9, 83.	3.0	51
13	Differential Effects of Axin2 Deficiency on the Fibrogenic and Regenerative Response in Livers of Bile Duct-Ligated Mice. European Surgical Research, 2015, 55, 328-340.	0.6	2
14	LEMming: A Linear Error Model to Normalize Parallel Quantitative Real-Time PCR (qPCR) Data as an Alternative to Reference Gene Based Methods. PLoS ONE, 2015, 10, e0135852.	1.1	22
15	Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8. Frontiers in Pharmacology, 2015, 6, 261.	1.6	29
16	Hepatocyte fate upon TGF-β challenge is determined by the matrix environment. Differentiation, 2015, 89, 105-116.	1.0	10
17	Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics and Chromatin, 2015, 8, 12.	1.8	77
18	Comparative Analysis and Functional Characterization of HC-AFW1 Hepatocarcinoma Cells: Cytochrome P450 Expression and Induction by Nuclear Receptor Agonists. Drug Metabolism and Disposition, 2015, 43, 1781-1787.	1.7	15

Maria Thomas

#	Article	IF	CITATIONS
19	Oncostatin M regulates SOCS3 mRNA stability via the MEK–ERK1/2-pathway independent of p38MAPK/MK2. Cellular Signalling, 2015, 27, 555-567.	1.7	23
20	Activating and Inhibitory Functions of WNT/ <i>β</i> -Catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Molecular Pharmacology, 2015, 87, 1013-1020.	1.0	34
21	The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes. BMC Cancer, 2015, 15, 488.	1.1	31
22	A Systematic Comparison of the Impact of Inflammatory Signaling on Absorption, Distribution, Metabolism, and Excretion Gene Expression and Activity in Primary Human Hepatocytes and HepaRG Cells. Drug Metabolism and Disposition, 2015, 43, 273-283.	1.7	80
23	Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells. Experimental Cell Research, 2014, 328, 429-443.	1.2	6
24	Targeting Nuclear Receptors with Lentivirus-Delivered Small RNAs in Primary Human Hepatocytes. Cellular Physiology and Biochemistry, 2014, 33, 2003-2013.	1.1	14
25	Genetics, Epigenetics, and Regulation of Drug-Metabolizing Cytochrome P450 Enzymes. Clinical Pharmacology and Therapeutics, 2014, 95, 258-261.	2.3	91
26	Interleukin-1β Enhances FasL-Induced Caspase-3/-7 Activity without Increasing Apoptosis in Primary Mouse Hepatocytes. PLoS ONE, 2014, 9, e115603.	1.1	19
27	Direct Transcriptional Regulation of Human Hepatic Cytochrome P450 3A4 (CYP3A4) by Peroxisome Proliferator–Activated Receptor Alpha (PPAR <i>î±</i>). Molecular Pharmacology, 2013, 83, 709-718.	1.0	88
28	PPARA: A Novel Genetic Determinant of CYP3A4 In Vitro and In Vivo. Clinical Pharmacology and Therapeutics, 2012, 91, 1044-1052.	2.3	131
29	Inferring statin-induced gene regulatory relationships in primary human hepatocytes. Bioinformatics, 2011, 27, 2473-2477.	1.8	19
30	Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT. Leukemia, 2010, 24, 1751-1759.	3.3	39
31	A novel reverse transduction adenoviral array for the functional analysis of shRNA libraries. BMC Genomics, 2008, 9, 441.	1.2	9
32	The T(4;11) Fusion Protein MLL/AF4 Regulates TERT Expression. Blood, 2008, 112, 3111-3111.	0.6	0
33	Impact of FLT3 mutations and secondary cytogenetic changes on the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with a single agent arsenic trioxide regimen. Haematologica, 2007, 92, 994-995.	1.7	54
34	RNA Interference in Haematopoietic and Leukaemic Cells. , 2007, , 29-48.		0
35	Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials1. Acta Pharmacologica Sinica, 2006, 27, 273-281.	2.8	28
36	Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood, 2005, 106, 3559-3566.	0.6	81

MARIA THOMAS

#	Article	IF	CITATIONS
37	Depletion of the Leukemic Fusion Protein MLL-AF4 with Short Interfering RNAs (siRNAs) Affects Post-Translational Modification of Aldolase A Blood, 2005, 106, 4341-4341.	0.6	0
38	Targeting MLL-AF4 with Short Interfering RNAs (siRNAs) Induces Apoptosis Related Genes APAF-1 and SEPT4 in t(4;11)-Positive Human Leukemic Cells Blood, 2005, 106, 2606-2606.	0.6	0
39	Suppression of MLL-AF4 by Small Interfering RNAs Inhibits Proliferation and Induces Apoptosis in T(4;11)-Positive SEM Cells Blood, 2004, 104, 4433-4433.	0.6	Ο
40	Proximal transcribed regions of bacterial promoters have a non-random distribution of A/T tracts. Nucleic Acids Research, 1999, 27, 4768-4774.	6.5	17
41	Non-canonical sequence elements in the promoter structure. Cluster analysis of promoters recognized by Escherichia coli RNA polymerase. Nucleic Acids Research, 1997, 25, 4703-4709.	6.5	47