List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672865/publications.pdf Version: 2024-02-01

JENO CURICZA

#	Article	IF	CITATIONS
1	Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. Journal of Applied Crystallography, 2001, 34, 298-310.	1.9	677
2	MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles byabinitiotheoretical functions. Journal of Applied Crystallography, 2001, 34, 669-676.	1.9	380
3	Correlation between subgrains and coherently scattering domains. Powder Diffraction, 2005, 20, 366-375.	0.4	229
4	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
5	Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 2002, 40, 929-937.	5.4	188
6	Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. Journal of Alloys and Compounds, 2005, 394, 194-199.	2.8	187
7	Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation. Current Applied Physics, 2006, 6, 194-199.	1.1	132
8	High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Materialia, 2013, 61, 228-238.	3.8	110
9	Defect structure and hardness in nanocrystalline CoCrFeMnNi High-Entropy Alloy processed by High-Pressure Torsion. Journal of Alloys and Compounds, 2017, 711, 143-154.	2.8	100
10	Microstructure and strength of severely deformed fcc metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 86-90.	2.6	91
11	Correlation between microstructure and mechanical properties of severely deformed metals. Journal of Alloys and Compounds, 2009, 483, 271-274.	2.8	88
12	High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation. Materials Letters, 2015, 153, 5-9.	1.3	87
13	Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals – Comparison of experimental and modeling results. International Journal of Plasticity, 2015, 72, 127-150.	4.1	86
14	Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Materials Characterization, 2015, 108, 1-7.	1.9	84
15	Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions. Materials Characterization, 2016, 111, 106-113.	1.9	82
16	Microstructure of severely deformed metals determined by X-ray peak profile analysis. Journal of Alloys and Compounds, 2004, 378, 248-252.	2.8	80
17	Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 752-760.	2.6	80
18	Microstructural characterization of ultrafine-grained nickel. Physica Status Solidi A, 2003, 198, 263-271.	1.7	76

#	Article	IF	CITATIONS
19	Plastic instabilities and dislocation densities during plastic deformation in Al–Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 186-192.	2.6	73
20	Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 231-239.	2.6	73
21	Microstructure and hardness of copper–carbon nanotube composites consolidated by High Pressure Torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4690-4695.	2.6	72
22	Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 248-252.	2.6	71
23	Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1206-1214.	2.6	71
24	Microstructural stability of Cu processed by different routes of severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1828-1832.	2.6	71
25	Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 215-223.	2.6	70
26	Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Materialia, 2016, 105, 258-272.	3.8	70
27	The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 372, 115-122.	2.6	67
28	Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 98-106.	2.6	64
29	Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy. Materials Characterization, 2017, 123, 282-293.	1.9	63
30	Phase transition in nanomagnetite. Journal of Applied Physics, 2008, 103, .	1.1	62
31	High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by High Pressure Torsion. Composites Part A: Applied Science and Manufacturing, 2013, 51, 71-79.	3.8	62
32	Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC. Journal of Materials Research, 2007, 22, 1314-1321.	1.2	58
33	Size and shape of crystallites and internal stresses in carbon blacks. Composites Part A: Applied Science and Manufacturing, 2005, 36, 431-436.	3.8	55
34	Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments. Journal of Materials Science, 2014, 49, 6674-6681.	1.7	53
35	Influence of severe plastic deformation on the microstructure and hardness of a CoCrFeNi high-entropy alloy: A comparison with CoCrFeNiMn. Materials Characterization, 2019, 154, 304-314.	1.9	53
36	On the strengthening behavior of ultrafine-grained nickel processed from nanopowders. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3227-3235.	2.6	52

#	Article	IF	CITATIONS
37	Microstructure and yield strength of severely deformed silver. Scripta Materialia, 2008, 58, 775-778.	2.6	51
38	Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. Journal of Alloys and Compounds, 2017, 705, 273-282.	2.8	48
39	Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation. Journal of Materials Science, 2012, 47, 7860-7869.	1.7	44
40	Annealingâ€Induced Hardening in Ultrafineâ€Grained and Nanocrystalline Materials. Advanced Engineering Materials, 2020, 22, 1900507.	1.6	43
41	Characterization of defect structures in nanocrystalline materials by X-ray line profile analysis. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 567-579.	0.4	41
42	Evolution of microstructure and texture in an ultrafine-grained Al6082 alloy during severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 335-342.	2.6	41
43	Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique. Journal of Materials Research, 2004, 19, 2703-2707.	1.2	39
44	Nanocrystalline materials studied by powder diffraction line profile analysis. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 114-128.	0.4	39
45	Structure and mechanical behaviour of interstitial-free steel processed by equal-channel angular pressing. Journal of Alloys and Compounds, 2011, 509, 3522-3525.	2.8	39
46	Stored energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion. Journal of Materials Research and Technology, 2017, 6, 339-347.	2.6	39
47	Characterization of Defect Structure in Electrodeposited Nanocrystalline Ni Films. Journal of the Electrochemical Society, 2016, 163, D107-D114.	1.3	37
48	Evolution of microstructure and hardness in Hf25Nb25Ti25Zr25 high-entropy alloy during high-pressure torsion. Journal of Alloys and Compounds, 2019, 788, 318-328.	2.8	37
49	Microstructure of diamond–SiC nanocomposites determined by X-ray line profile analysis. Diamond and Related Materials, 2006, 15, 1452-1456.	1.8	36
50	Microstructure and mechanical behavior of ultrafine-grained Ni processed by different powder metallurgy methods. Journal of Materials Research, 2009, 24, 217-226.	1.2	36
51	Plastic behavior of fcc metals over a wide range of strain: Macroscopic and microscopic descriptions and their relationship. Acta Materialia, 2011, 59, 2385-2391.	3.8	34
52	Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 407-416.	1.5	34
53	Lattice Defects and Their Influence on the Mechanical Properties of Bulk Materials Processed by Severe Plastic Deformation. Materials Transactions, 2019, 60, 1230-1242.	0.4	34
54	Atmospheric ageing of nanosized silicon nitride powders. Journal of Materials Chemistry, 2001, 11, 859-863.	6.7	32

#	Article	IF	CITATIONS
55	Microstructure and yield strength of ultrafine grained aluminum processed by hot isostatic pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 385-390.	2.6	32
56	Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite. Materials Characterization, 2016, 113, 117-124.	1.9	32
57	Microstructures and mechanical properties of Mg–Zn–Y alloy consolidated from gas-atomized powders using high-pressure torsion. Journal of Materials Science, 2012, 47, 7117-7123.	1.7	31
58	Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Materials Letters, 2018, 214, 240-242.	1.3	31
59	Evolution of size and shape of gold nanoparticles during long-time aging. Materials Chemistry and Physics, 2013, 138, 449-453.	2.0	29
60	Study of the compression and wear-resistance properties of freeze-cast Ti and Ti‒5W alloy foams for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 66-73.	1.5	29
61	High temperature thermal stability of nanocrystalline 316L stainless steel processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 323-331.	2.6	29
62	Effect of bath additives on the microstructure, lattice defect density and hardness of electrodeposited nanocrystalline Ni films. Surface and Coatings Technology, 2018, 349, 611-621.	2.2	29
63	Plastic behavior of face-centered-cubic metals over a wide range of strain. Acta Materialia, 2010, 58, 5015-5021.	3.8	28
64	Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al–Zn alloys processed by high-pressure torsion. Materials Letters, 2017, 186, 334-337.	1.3	28
65	The Electrochemical Degradation of Poly(3,4-ethylenedioxythiophene) Films Electrodeposited from Aqueous Solutions. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1281-1302.	1.4	27
66	Microstructure and mechanical properties of ultrafine-grained aluminum consolidated by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 501-508.	2.6	27
67	Inhomogeneous evolution of microstructure in AZ91 Mg-alloy during high temperature equal-channel angular pressing. Journal of Alloys and Compounds, 2010, 492, 166-172.	2.8	26
68	Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation. Journal of Solid State Electrochemistry, 2015, 19, 1247-1252.	1.2	26
69	Synthesis of nanosized zinc ferrites from liquid precursors in RF thermal plasma reactor. Journal of the European Ceramic Society, 2007, 27, 941-945.	2.8	24
70	Twinning and dislocation activity in silver processed by severe plastic deformation. Journal of Materials Science, 2009, 44, 1656-1660.	1.7	24
71	Silica-Supported Au Nanoparticles Decorated by CeO ₂ : Formation, Morphology, and CO Oxidation Activity. Journal of Physical Chemistry C, 2011, 115, 20388-20398.	1.5	24
72	Microstructure and Mechanical Behavior of Ultrafine-Grained Titanium. Materials Science Forum, 0, 589, 99-104.	0.3	23

#	Article	IF	CITATIONS
73	Reduction of vacancy concentration during storage of severely deformed Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6102-6104.	2.6	23
74	The effect of impurity level on ultrafine-grained microstructures and their stability in low stacking fault energy silver. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8694-8699.	2.6	23
75	Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact. Materials Characterization, 2011, 62, 480-487.	1.9	23
76	Manufacturing of ultrafine-grained titanium by caliber rolling in the laboratory and in industry. Journal of Materials Processing Technology, 2014, 214, 1307-1315.	3.1	23
77	Annealingâ€Induced Hardening in Ultrafineâ€Grained Ni–Mo Alloys. Advanced Engineering Materials, 2018, 20, 1800184.	1.6	23
78	Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. Journal of Materials Science, 2019, 54, 3469-3484.	1.7	23
79	X-ray diffraction study on the microstructure of a Mg–Zn–Y alloy consolidated by high-pressure torsion. Journal of Alloys and Compounds, 2012, 539, 32-35.	2.8	22
80	Effect of Mo addition on the microstructure and hardness of ultrafine-grained Ni alloys processed by a combination of cryorolling and high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 92-100.	2.6	22
81	Characterization of stress–strain relationships in Al over a wide range of testing temperatures. International Journal of Plasticity, 2014, 54, 178-192.	4.1	21
82	Compressive behavior of Cu-Ni alloy foams: Effects of grain size, porosity, pore directionality, and chemical composition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 160-170.	2.6	21
83	Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys. Materials Research Letters, 2021, 9, 475-482.	4.1	21
84	The influence of Mo addition on the microstructure and its thermal stability for electrodeposited Ni films. Materials Characterization, 2018, 145, 563-572.	1.9	19
85	Thermal stability of a nanocrystalline HfNbTiZr multi-principal element alloy processed by high-pressure torsion. Materials Characterization, 2020, 168, 110550.	1.9	19
86	Defect structure in nanomaterials. , 2012, , .		19
87	Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. Journal of Materials Science, 2013, 48, 4637-4645.	1.7	18
88	The Influence of Severe Plastic Deformation and Subsequent Annealing on the Microstructure and Hardness of a Cu–Cr–Zr Alloy. Materials, 2020, 13, 2241.	1.3	18
89	Different Evolutions of the Microstructure, Texture, and Mechanical Performance During Tension and Compression of 316L Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3447-3460.	1.1	18
90	Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion. International Journal of Plasticity, 2022, 150, 103193.	4.1	18

#	Article	IF	CITATIONS
91	The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials. Materials Science Forum, 0, 667-669, 677-682.	0.3	17
92	Microstructure of low stacking fault energy silver processed by different routes of severe plastic deformation. Journal of Alloys and Compounds, 2012, 536, S190-S193.	2.8	17
93	Solute redistribution during annealing of a cold rolled Cu–Ag alloy. Journal of Alloys and Compounds, 2015, 623, 96-103.	2.8	17
94	Delayed microstructural recovery in silver processed by equal-channel angular pressing. Journal of Materials Science, 2008, 43, 5672-5676.	1.7	16
95	High temperature thermal stability of ultrafine-grained silver processed by equal-channel angular pressing. Journal of Materials Science, 2013, 48, 1675-1684.	1.7	16
96	Mechanochemical Reactions of Lithium Niobate Induced by High-Energy Ball-Milling. Crystals, 2019, 9, 334.	1.0	16
97	Superior low-temperature superplasticity in fine-grained ZK60 Mg alloy sheet produced by a combination of repeated upsetting process and sheet extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141444.	2.6	16
98	Microstructure evolution in a nanocrystalline CoCrFeNi multi-principal element alloy during annealing. Materials Characterization, 2021, 171, 110807.	1.9	15
99	Influence of the preparation conditions on the microstructure of electrodeposited nanocrystalline Ni–Mo alloys. Electrochimica Acta, 2021, 382, 138352.	2.6	15
100	Assessment of Dislocation Density by Various Techniques in Cold Rolled 1050 Aluminum Alloy. Metals, 2021, 11, 1571.	1.0	15
101	Characterization of the Microstructure of Severely Deformed Titanium by X-Ray Diffraction Profile Analysis. Materials Science Forum, 2003, 414-415, 229-234.	0.3	14
102	Stability of Ultrafine-Grained Microstructure in Fcc Metals Processed by Severe Plastic Deformation. Key Engineering Materials, 0, 465, 195-198.	0.4	14
103	The influence of artificial aging on the microstructure and hardness of an Al–Zn–Mg–Zr alloy processed by equal-channel angular pressing. Journal of Materials Science, 2019, 54, 10918-10928.	1.7	14
104	Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion. Journal of Materials Science, 2020, 55, 16791-16805.	1.7	14
105	Calorimetric and X-Ray Measurements in Ultrafine-Grained Nickel. Materials Science Forum, 2003, 426-432, 4507-4512.	0.3	13
106	Influence of Bath Additives on the Thermal Stability of the Nanostructure and Hardness of Ni Films Processed by Electrodeposition. Coatings, 2019, 9, 644.	1.2	13
107	Effect of hot isostatic pressing on microstructure and mechanical properties of Ti6Al4V-zirconia nanocomposites processed by laser-powder bed fusion. Materials and Design, 2022, 214, 110392.	3.3	13
108	Evolution of dislocation density during compression of a Mg-Zn-Y alloy with long period stacking ordered structure. Materials Letters, 2017, 190, 86-89.	1.3	12

#	Article	IF	CITATIONS
109	Synthesis of a Highâ€Capacity NiO/Ni Foam Anode for Advanced Lithiumâ€Ion Batteries. Advanced Engineering Materials, 2020, 22, 2000351.	1.6	12
110	On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsion. Journal of Alloys and Compounds, 2022, 904, 163941.	2.8	12
111	Examination of nanocrystalline TiC/amorphous C deposited thin films. Journal of the European Ceramic Society, 2014, 34, 3421-3425.	2.8	11
112	Microstructure and strength of nickel subjected to large plastic deformation at very high strain rate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 9-15.	2.6	11
113	The influence of chemical heterogeneities on the local mechanical behavior of a high-entropy alloy: A micropillar compression study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 165-167.	2.6	11
114	Stored energy in nanocrystalline Ni-Mo films processed by electrodeposition. Journal of Alloys and Compounds, 2019, 796, 307-313.	2.8	11
115	Influence of temperature of ECAP processing on the microstructure and microhardness of as-cast AX41 alloy. Journal of Materials Science, 2020, 55, 3118-3129.	1.7	11
116	High Purity Ultrafineâ€Grained Nickel Processed by Dynamic Plastic Deformation: Microstructure and Mechanical Properties. Advanced Engineering Materials, 2012, 14, 1027-1033.	1.6	10
117	Evolution of the microstructure during annealing of ultrafine-grained Ni with different Mo contents. Materials Characterization, 2017, 130, 56-63.	1.9	10
118	Microstructure, Hardness, and Elastic Modulus of a Multibeam-Sputtered Nanocrystalline Co-Cr-Fe-Ni Compositional Complex Alloy Film. Materials, 2021, 14, 3357.	1.3	10
119	Texture evolution during room temperature ageing of silver processed by equal-channel angular pressing. Scripta Materialia, 2011, 64, 1007-1010.	2.6	9
120	Possible self-organized criticality in the Portevin-Le Chatelier effect during decomposition of solid solution alloys. MRS Communications, 2012, 2, 1-4.	0.8	9
121	Microstructure and mechanical properties of Al 7075 alloy processed by differential speed rolling. Periodica Polytechnica, Mechanical Engineering, 2012, 56, 111.	0.8	9
122	Characterizing Microstructural and Mechanical Properties of Al–Zn Alloys Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900672.	1.6	9
123	Structure and Magnetic Properties of Nanocrystalline Fe55Pd45 Processed by Sonoelectrodeposition. Journal of Electronic Materials, 2017, 46, 3720-3725.	1.0	8
124	Type and density of dislocations in a plastically deformed long-period stacking ordered magnesium alloy. Journal of Alloys and Compounds, 2019, 771, 629-635.	2.8	8
125	Reliability and interpretation of the microstructural parameters determined by X-ray line profile analysis for nanostructured materials. European Physical Journal: Special Topics, 2022, 231, 4153-4165.	1.2	8
126	Microstructure and Mechanical Behavior of Severely Deformed F.C.C. Metals. Materials Science Forum, 2008, 567-568, 181-184.	0.3	7

#	Article	IF	CITATIONS
127	Structure and Giant Magnetoresistance of Co-Fe/Cu Multilayer Films Electrodeposited from Various Bath Formulations. Journal of the Electrochemical Society, 2019, 166, D923-D934.	1.3	7
128	Microstructure and Tensile Behavior of Al7075/Al Composites Consolidated from Machining Chips Using HPT: A Way of Solid-State Recycling. Metals and Materials International, 2020, 26, 1881-1898.	1.8	7
129	Room-temperature magnetoresistance of nanocrystalline Ni metal with various grain sizes. European Physical Journal Plus, 2020, 135, 1.	1.2	7
130	Comparison of morphology and compressive deformation behavior of copper foams manufactured via freeze-casting and space-holder methods. Journal of Materials Research and Technology, 2021, 15, 6855-6865.	2.6	7
131	Characterization of Glasses and Ceramics by Continuous Indentation Tests. Key Engineering Materials, 1995, 103, 217-220.	0.4	6
132	Monitoring of Self-Annealing in Ultrafine-Grained Silver Using Nanoindentation. Nanoscience and Nanotechnology Letters, 2010, 2, 294-297.	0.4	6
133	Evolution of Microstructure, Phase Composition and Hardness in 316L Stainless Steel Processed by High-Pressure Torsion. Materials Science Forum, 0, 879, 502-507.	0.3	6
134	Effect of Heat Treatment on the Microstructure and Performance of Cu Nanofoams Processed by Dealloying. Materials, 2021, 14, 2691.	1.3	6
135	Inhomogeneous softening during annealing of ultrafine-grained silver processed by HPT. Journal of Materials Science, 2013, 48, 7384-7391.	1.7	5
136	Investigation of Lattice Defects in a Plastically Deformed High-Entropy Alloy. Materials Science Forum, 0, 885, 74-79.	0.3	5
137	Characterization Methods of Lattice Defects. , 2017, , 27-57.		5
138	Influence of Mo alloying on the thermal stability and hardness of ultrafine-grained Ni processed by high-pressure torsion. Journal of Materials Research and Technology, 2017, 6, 361-368.	2.6	5
139	Freeze Casting is a Facile Method to Create Solid Solution Alloy Foams: Cu–Ni Alloy Foams via Freeze Casting. Advanced Engineering Materials, 2019, 21, 1801265.	1.6	5
140	Effect of Pre-Aging on the Microstructure and Strength of Supersaturated AlZnMg Alloys Processed by ECAP. Materials Science Forum, 0, 584-586, 501-506.	0.3	4
141	The Influence of Impurity Content on Thermal Stability of Low Stacking Fault Energy Silver Processed by Severe Plastic Deformation. Materials Science Forum, 2012, 729, 222-227.	0.3	4
142	Microstructure and Thermal Stability of Copper - Carbon Nanotube Composites Consolidated by High Pressure Torsion. Materials Science Forum, 2012, 729, 228-233.	0.3	4
143	The Effect of Thermomechanical Treatment on the Microstructure and the Mechanical Behavior of a Supersaturated Cu-Ag Alloy. Materials Science Forum, 0, 812, 53-58.	0.3	4
144	Influence of High-Pressure Torsion on the Microstructure and the Hardness of a Ti-Rich High-Entropy Alloy. Materials Science Forum, 2016, 879, 732-737.	0.3	4

JENO GUBICZA

#	Article	IF	CITATIONS
145	The Influence of Plastic Deformation on Lattice Defect Structure and Mechanical Properties of 316L Austenitic Stainless Steel. Materials Science Forum, 0, 885, 13-18.	0.3	4
146	Correlation between strain-rate sensitivity and viscous properties derived from dynamic nanoindentation of ultrafine-grained Alâ^'Zn alloys. MRS Communications, 2019, 9, 310-314.	0.8	4
147	Improved Hardness and Thermal Stability of Nanocrystalline Nickel Electrodeposited with the Addition of Cysteine. Nanomaterials, 2020, 10, 2254.	1.9	4
148	Annealing-Induced Changes in the Microstructure and Mechanical Response of a Cu Nanofoam Processed by Dealloying. Metals, 2020, 10, 1128.	1.0	4
149	Processing Age-Hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies and Advantages. Materials Science Forum, 0, 633-634, 527-534.	0.3	3
150	Effect of Lithiation on the Microstructure of a Cobalt Foam Processed by Freeze Casting. Advanced Engineering Materials, 2018, 20, 1800343.	1.6	3
151	Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: Effect of the degree of severe plastic deformation. Intermetallics, 2022, 142, 107445.	1.8	3
152	Microstructure and Thermal Stability in CP Titanium Processed by Electroplastic Rolling. Key Engineering Materials, 0, 465, 215-218.	0.4	2
153	Defect structure in bulk nanomaterials processed by severe plastic deformation. , 2012, , 41-83.		2
154	The effect of hydrogen charging on the evolution of lattice defects and phase composition during tension in 316L stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 31-36.	2.6	2
155	Stability of microstructure in silver processed by severe plastic deformation. International Journal of Materials Research, 2009, 100, 884-887.	0.1	2
156	Microstructure Evolution in Cu–0.5 wt% Zr Alloy Processed by a Novel Severe Plastic Deformation Technique of Rotational Constrained Bending. Metals, 2021, 11, 63.	1.0	2
157	Combinatorial Study of Phase Composition, Microstructure and Mechanical Behavior of Co-Cr-Fe-Ni Nanocrystalline Film Processed by Multiple-Beam-Sputtering Physical Vapor Deposition. Materials, 2022, 15, 2319.	1.3	2
158	Effect of laser heating on microstructure and deposition properties of cold sprayed SS304L. Materialia, 2022, 22, 101372.	1.3	2
159	Unique Features of Ultrafine-Grained Microstructures in Materials Having Low Stacking Fault Energy. Materials Science Forum, 2010, 659, 171-176.	0.3	1
160	Correlation between defect structure and mechanical properties of nanocrystalline materials. , 2012, , 167-230.		1
161	Effect of Processing Conditions on Microstructure and Mechanical Behaviour of Metals Sintered from Nanopowders. Materials Science Forum, 0, 729, 49-54.	0.3	1
162	Defect Structure in Bulk Nanomaterials Processed by Severe Plastic Deformation. , 2017, , 59-93.		1

10

#	Article	IF	CITATIONS
163	Defect Structure in Low Stacking Fault Energy Nanomaterials. , 2017, , 95-119.		1
164	Correlation Between Defect Structure and Mechanical Properties of Nanocrystalline Materials. , 2017, , 175-223.		1
165	Mechanical Properties and Microstructure Development in Ultrafineâ€grained Materials Processed by Equalâ€channel Angular Pressing. , 0, , .		1
166	Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations. AIP Conference Proceedings, 2018, , .	0.3	1
167	Micropillar Compression Study on the Deformation Behavior of Electrodeposited Ni–Mo Films. Coatings, 2020, 10, 205.	1.2	1
168	Practical Applications of X-Ray Line Profile Analysis. , 2017, , 1094-1132.		1
169	Comment on "Influence of prior deformation temperature on strain induced martensite formation and its effect on the tensile strengthening behaviour of type 304 SS studied by XRDLPA. Materials Science & amp; Engineering A 826 (2021) 141960†Materials Science & amp; Engineering A: Structural Materials: Properties. Microstructure and Processing. 2022, 832, 142450.	2.6	1
170	Defect structure and mechanical properties of metal matrix-carbon nanotube composites. , 2012, , 231-261.		0
171	Thermal stability of defect structures in nanomaterials. , 2012, , 263-299.		0
172	Defect structure in low stacking fault energy nanomaterialsm. , 2012, , 85-118.		0
173	Deformation Mechanisms in Ultrafine-Grained Zn at Different Strain Rates and Temperatures. Key Engineering Materials, 0, 592-593, 313-316.	0.4	0
174	Thermal Stability of Defect Structures in Nanomaterials. , 2017, , 317-371.		0
175	Lattice Defects in Nanoparticles and Nanomaterials Sintered From Nanopowders. , 2017, , 121-153.		0
176	Lattice Defects in Nanocrystalline FilmsÂand Multilayers. , 2017, , 155-173.		0
177	Defect Structure and Properties of Metal Matrix–Carbon Nanotube Composites. , 2017, , 225-246.		0
178	Secrets of Abraham Ganz's Train Wheels Enlightened by Materials Science Methods. Materials Science Forum, 0, 885, 55-60.	0.3	0
179	Evolution of the Dislocation Structure During Compression in a Mg–Zn–Y Alloy with Long Period Stacking Ordered Structure. Minerals, Metals and Materials Series, 2018, , 385-389.	0.3	0
180	Deformation-softening in ultrafine-grained materials. IOP Conference Series: Materials Science and Engineering, 2020, 903, 012041.	0.3	0

#	Article	IF	CITATIONS
181	An Investigation of Strainâ€Softening Phenomenon in Al–0.1% Mg Alloy during Highâ€Pressure Torsion Processing. Advanced Engineering Materials, 2020, 22, 1901578.	1.6	0
182	Investigation of the Compressive Behavior of a Freezeâ€Cast Cu Foam Using Acoustic Emission Measurement. Advanced Engineering Materials, 0, , 2100378.	1.6	0