Zhenlong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672789/publications.pdf

Version: 2024-02-01

159525 168321 3,324 91 30 53 citations h-index g-index papers 103 103 103 2795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Does Distance Still Matter? Moderating Effects of Distance Measures on the Relationship Between Pandemic Severity and Bilateral Tourism Demand. Journal of Travel Research, 2023, 62, 610-625.	5.8	6
2	Three dimensions of COVIDâ€19 risk perceptions and their socioeconomic correlates in the United States: A social media analysis. Risk Analysis, 2023, 43, 1174-1186.	1.5	9
3	Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation. International Journal of Geographical Information Science, 2022, 36, 1317-1342.	2.2	19
4	Population Mobility and Aging Accelerate the Transmission of Coronavirus Disease 2019 in the Deep South: A County-Level Longitudinal Analysis. Clinical Infectious Diseases, 2022, 74, e1-e3.	2.9	7
5	The times, they are a-changin': tracking shifts in mental health signals from early phase to later phase of the COVID-19 pandemic in Australia. BMJ Global Health, 2022, 7, e007081.	2.0	10
6	Deep Learning of High-Resolution Aerial Imagery for Coastal Marsh Change Detection: A Comparative Study. ISPRS International Journal of Geo-Information, 2022, 11, 100.	1.4	10
7	The promise of excess mobility analysis: measuring episodic-mobility with geotagged social media data. Cartography and Geographic Information Science, 2022, 49, 464-478.	1.4	3
8	Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol. BMC Infectious Diseases, 2022, 22, 122.	1.3	6
9	Exploring the spatial disparity of homeâ€dwelling time patterns in the USA during the COVIDâ€19 pandemic via Bayesian inference. Transactions in GIS, 2022, 26, 1939-1961.	1.0	11
10	Human mobility and COVID-19 transmission: a systematic review and future directions. Annals of GIS, 2022, 28, 501-514.	1.4	35
11	A Comparison between Sentinel-2 and Landsat 8 OLI Satellite Images for Soil Salinity Distribution Mapping Using a Deep Learning Convolutional Neural Network. Canadian Journal of Remote Sensing, 2022, 48, 452-468.	1.1	11
12	Social Capital, Urbanization Level, and COVID-19 Vaccination Uptake in the United States: A National Level Analysis. Vaccines, 2022, 10, 625.	2.1	12
13	Learning-Based Methods for Detection and Monitoring of Shallow Flood-Affected Areas: Impact of Shallow-Flood Spreading on Vegetation Density. Canadian Journal of Remote Sensing, 2022, 48, 481-503.	1.1	10
14	Urban-regional disparities in mental health signals in Australia during the COVID-19 pandemic: a study via Twitter data and machine learning models. Cambridge Journal of Regions, Economy and Society, 2022, 15, 663-682.	1.7	4
15	Correlates of Zero-Dose Vaccination Status among Children Aged 12–59 Months in Sub-Saharan Africa: A Multilevel Analysis of Individual and Contextual Factors. Vaccines, 2022, 10, 1052.	2.1	6
16	A 100 m population grid in the CONUS by disaggregating census data with open-source Microsoft building footprints. Big Earth Data, 2021, 5, 112-133.	2.0	32
17	Disparity in HIV Service Interruption in the Outbreak of COVID-19 in South Carolina. AIDS and Behavior, 2021, 25, 49-57.	1.4	62
18	The characteristics of multi-source mobility datasets and how they reveal the luxury nature of social distancing in the U.S. during the COVID-19 pandemic. International Journal of Digital Earth, 2021, 14, 424-442.	1.6	62

#	Article	IF	CITATIONS
19	Simulating multiâ€exit evacuation using deep reinforcement learning. Transactions in GIS, 2021, 25, 1542-1564.	1.0	11
20	Spatial-Temporal Relationship Between Population Mobility and COVID-19 Outbreaks in South Carolina: Time Series Forecasting Analysis. Journal of Medical Internet Research, 2021, 23, e27045.	2.1	29
21	Building a social media-based HIV risk behavior index to inform the prediction of HIV new diagnosis: a feasibility study. Aids, 2021, 35, S91-S99.	1.0	6
22	Spatiotemporal Patterns of Human Mobility and Its Association with Land Use Types during COVID-19 in New York City. ISPRS International Journal of Geo-Information, 2021, 10, 344.	1.4	19
23	Introducing Twitter Daily Estimates of Residents and Non-Residents at the County Level. Social Sciences, 2021, 10, 227.	0.7	5
24	A novel big data approach to measure and visualize urban accessibility. Computational Urban Science, 2021, 1, 1.	1.9	4
25	Human mobility data in the COVID-19 pandemic: characteristics, applications, and challenges. International Journal of Digital Earth, 2021, 14, 1126-1147.	1.6	110
26	Measuring global multi-scale place connectivity using geotagged social media data. Scientific Reports, 2021, 11, 14694.	1.6	19
27	Using Mobile Device Data to Track the Effects of the COVID-19 Pandemic on Spatiotemporal Patterns of National Park Visitation. Sustainability, 2021, 13, 9366.	1.6	34
28	ODT FLOW: Extracting, analyzing, and sharing multi-source multi-scale human mobility. PLoS ONE, 2021, 16, e0255259.	1.1	25
29	Revealing Public Opinion Towards COVID-19 Vaccines With Twitter Data in the United States: Spatiotemporal Perspective. Journal of Medical Internet Research, 2021, 23, e30854.	2.1	87
30	Temporal Geospatial Analysis of COVID-19 Pre-Infection Determinants of Risk in South Carolina. International Journal of Environmental Research and Public Health, 2021, 18, 9673.	1.2	3
31	Identifying disaster related social media for rapid response: a visual-textual fused CNN architecture. International Journal of Digital Earth, 2020, 13, 1017-1039.	1.6	23
32	SOVAS: a scalable online visual analytic system for big climate data analysis. International Journal of Geographical Information Science, 2020, 34, 1188-1209.	2.2	11
33	Detecting new building construction in urban areas based on images of small unmanned aerial system. Papers in Applied Geography, 2020, 6, 56-71.	0.8	5
34	Time-Series Clustering for Home Dwell Time during COVID-19: What Can We Learn from It?. ISPRS International Journal of Geo-Information, 2020, 9, 675.	1.4	49
35	Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation. Annals of GIS, 2020, 26, 329-342.	1.4	12
36	Introduction to Big Data Computing for Geospatial Applications. ISPRS International Journal of Geo-Information, 2020, 9, 487.	1.4	10

#	Article	IF	Citations
37	Taking the pulse of COVID-19: a spatiotemporal perspective. International Journal of Digital Earth, 2020, 13, 1186-1211.	1.6	88
38	Evacuation Departure Timing during Hurricane Matthew. Weather, Climate, and Society, 2020, 12, 235-248.	0.5	14
39	Spatiotemporal event detection: a review. International Journal of Digital Earth, 2020, 13, 1339-1365.	1.6	57
40	Delineating and modeling activity space using geotagged social media data. Cartography and Geographic Information Science, 2020, 47, 277-288.	1.4	30
41	Using geotagged tweets to track population movements to and from Puerto Rico after Hurricane Maria. Population and Environment, 2020, 42, 4-27.	1.3	48
42	Local motion simulation using deep reinforcement learning. Transactions in GIS, 2020, 24, 756-779.	1.0	10
43	Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions. Geotechnologies and the Environment, 2020, , 53-76.	0.3	16
44	Geospatial Information Processing Technologies. , 2020, , 191-227.		7
45	Bridging Twitter and Survey Data for Evacuation Assessment of Hurricane Matthew and Hurricane Irma. Natural Hazards Review, 2020, 21, .	0.8	37
46	Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS ONE, 2020, 15, e0241957.	1.1	165
47	Monitoring the Spatial Spread of COVID-19 and Effectiveness of Control Measures Through Human Movement Data: Proposal for a Predictive Model Using Big Data Analytics. JMIR Research Protocols, 2020, 9, e24432.	0.5	29
48	Prototyping a Social Media Flooding Photo Screening System Based on Deep Learning. ISPRS International Journal of Geo-Information, 2020, 9, 104.	1.4	33
49	Introduction to social sensing and big data computing for disaster management. International Journal of Digital Earth, 2019, 12, 1198-1204.	1.6	21
50	Social Network, Activity Space, Sentiment, and Evacuation: What Can Social Media Tell Us?. Annals of the American Association of Geographers, 2019, 109, 1795-1810.	1.5	25
51	Topic modeling and sentiment analysis of global climate change tweets. Social Network Analysis and Mining, 2019, 9, 1.	1.9	146
52	An Efficient Framework for Remote Sensing Parallel Processing: Integrating the Artificial Bee Colony Algorithm and Multiagent Technology. Remote Sensing, 2019, 11, 152.	1.8	15
53	A graph-based approach to detecting tourist movement patterns using social media data. Cartography and Geographic Information Science, 2019, 46, 368-382.	1.4	48
54	A visual–textual fused approach to automated tagging of flood-related tweets during a flood event. International Journal of Digital Earth, 2019, 12, 1248-1264.	1.6	30

#	Article	IF	Citations
55	Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level. Cartography and Geographic Information Science, 2019, 46, 228-242.	1.4	86
56	A near real-time flood-mapping approach by integrating social media and post-event satellite imagery. Annals of GIS, 2018, 24, 113-123.	1.4	53
57	A novel approach to leveraging social media for rapid flood mapping: a case study of the 2015 South Carolina floods. Cartography and Geographic Information Science, 2018, 45, 97-110.	1.4	148
58	A general-purpose framework for parallel processing of large-scale LiDAR data. International Journal of Digital Earth, 2018, 11, 26-47.	1.6	30
59	A geospatial hybrid cloud platform based on multi-sourced computing and model resources for geosciences. International Journal of Digital Earth, 2018, 11, 1184-1204.	1.6	13
60	Twitter Analytics-Based Assessment: Are the United States Coastal Regions Prepared for Climate Change \pounds '. , 2018, , .		10
61	Geospatial Assessment of Wetness Dynamics in the October 2015 SC Flood with Remote Sensing and Social Media. Southeastern Geographer, 2018, 58, 164-180.	0.1	6
62	Reconstructing Flood Inundation Probability by Enhancing Near Real-Time Imagery With Real-Time Gauges and Tweets. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 4691-4701.	2.7	31
63	Building Model as a Service to support geosciences. Computers, Environment and Urban Systems, 2017, 61, 141-152.	3.3	40
64	A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce. International Journal of Geographical Information Science, 2017, 31, 17-35.	2.2	54
65	A high performance query analytical framework for supporting data-intensive climate studies. Computers, Environment and Urban Systems, 2017, 62, 210-221.	3.3	19
66	Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 2017, 10, 13-53.	1.6	537
67	The impact of MTUP to explore online trajectories for human mobility studies. , 2017, , .		2
68	Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew. PLoS ONE, 2017, 12, e0181701.	1.1	111
69	Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data. ISPRS International Journal of Geo-Information, 2016, 5, 173.	1.4	37
70	Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation. PLoS ONE, 2016, 11, e0152250.	1.1	9
71	Mining frequent trajectory patterns from online footprints. , 2016, , .		8
72	Adopting cloud computing to optimize spatial web portals for better performance to support Digital Earth and other global geospatial initiatives. International Journal of Digital Earth, 2015, 8, 451-475.	1.6	18

#	Article	IF	Citations
73	Forming a global monitoring mechanism and a spatiotemporal performance model for geospatial services. International Journal of Geographical Information Science, 2015, 29, 375-396.	2.2	10
74	Contemporary Computing Technologies for Processing Big Spatiotemporal Data., 2015,, 327-351.		9
75	Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework. PLoS ONE, 2015, 10, e0116781.	1.1	37
76	A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services. PLoS ONE, 2014, 9, e105297.	1.1	38
77	Optimizing an index with spatiotemporal patterns to support GEOSS Clearinghouse. International Journal of Geographical Information Science, 2014, 28, 1459-1481.	2.2	15
78	GEOSS Clearinghouse., 2014,, 31-54.		0
79	A High Performance Web-Based System for Analyzing and Visualizing Spatiotemporal Data for Climate Studies. Lecture Notes in Computer Science, 2013, , 190-198.	1.0	10
80	Evaluating open-source cloud computing solutions for geosciences. Computers and Geosciences, 2013, 59, 41-52.	2.0	42
81	Accelerating Geocomputation with Cloud Computing. , 2013, , 41-51.		2
82	Handling intensities of data, computation, concurrent access, and spatiotemporal patterns. , 2013 , , $275-294$.		0
83	Geospatial Service Web: towards integrated cyberinfrastructure for GIScience. Geo-Spatial Information Science, 2012, 15, 73-84.	2.4	16
84	A Web-Based Geovisual Analytical System for Climate Studies. Future Internet, 2012, 4, 1069-1085.	2.4	19
85	An optimized framework for seamlessly integrating OGC Web Services to support geospatial sciences. International Journal of Geographical Information Science, 2011, 25, 595-613.	2.2	52
86	Monitoring and evaluating the quality of Web Map Service resources for optimizing map composition over the internet to support decision making. Computers and Geosciences, 2011, 37, 485-494.	2.0	40
87	Semantic-based web service discovery and chaining for building an Arctic spatial data infrastructure. Computers and Geosciences, 2011, 37, 1752-1762.	2.0	44
88	The GEOSS clearinghouse high performance search engine. , 2011, , .		12
89	Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5498-5503.	3.3	107
90	Human Mobility Data in the COVID-19 Pandemic: Characteristics, Applications, and Challenges. SSRN Electronic Journal, 0, , .	0.4	3

ZHENLONG LI

#	Article	IF	CITATIONS
91	Social distance integrated gravity model for evacuation destination choice. International Journal of Digital Earth, 0 , $1 \cdot 15$.	1.6	13