Xiangui He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672613/publications.pdf

Version: 2024-02-01

516215 433756 1,619 35 16 31 h-index citations g-index papers 35 35 35 1111 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4–18 years. British Journal of Ophthalmology, 2023, 107, 167-175.	2.1	27
2	Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents. British Journal of Ophthalmology, 2023, 107, 862-868.	2.1	3
3	Development of the retina and its relation with myopic shift varies from childhood to adolescence. British Journal of Ophthalmology, 2022, 106, 825-830.	2.1	4
4	Accelerated loss of crystalline lens power initiating from emmetropia among young school children: a 2â€year longitudinal study. Acta Ophthalmologica, 2022, 100, .	0.6	9
5	How to Conduct School Myopia Screening: Comparison Among Myopia Screening Tests and Determination of Associated Cutoffs. Asia-Pacific Journal of Ophthalmology, 2022, 11, 12-18.	1.3	7
6	Association between axial length elongation and spherical equivalent progression in Chinese children and adolescents. Ophthalmic and Physiological Optics, 2022, 42, 1133-1140.	1.0	5
7	Crystalline Lens Power and Associated Factors in Highly Myopic Children and Adolescents Aged 4 to 19 Years. American Journal of Ophthalmology, 2021, 223, 169-177.	1.7	16
8	Prevalence of fundus tessellation and its associated factors in Chinese children and adolescents with high myopia. Acta Ophthalmologica, 2021, 99, e1524-e1533.	0.6	20
9	IMI Risk Factors for Myopia. , 2021, 62, 3.		143
10	Eyes grow towards mild hyperopia rather than emmetropia in Chinese preschool children. Acta Ophthalmologica, 2021, 99, e1274-e1280.	0.6	13
11	Design and Pilot data of the high myopia registration study: Shanghai Child and Adolescent Largeâ€scale Eye Study (SCALEâ€HM). Acta Ophthalmologica, 2021, 99, e489-e500.	0.6	12
12	The Existence and Regression of Persistent Bergmeister's Papilla in Myopic Children Are Associated With Axial Length. Translational Vision Science and Technology, 2021, 10, 4.	1.1	4
13	Prevalence of myopia and high myopia, and the association with education: Shanghai Child and Adolescent Large-scale Eye Study (SCALE): a cross-sectional study. BMJ Open, 2021, 11, e048450.	0.8	21
14	Sleeping late is a risk factor for myopia development amongst school-aged children in China. Scientific Reports, 2020, 10, 17194.	1.6	39
15	Changes in Choroidal Thickness Varied by Age and Refraction in Children and Adolescents: A 1-Year Longitudinal Study. American Journal of Ophthalmology, 2020, 213, 46-56.	1.7	59
16	Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies. Journal of Translational Medicine, 2019, 17, 314.	1.8	11
17	Using Decision Curve Analysis to Evaluate Common Strategies for Myopia Screening in School-Aged Children. Ophthalmic Epidemiology, 2019, 26, 286-294.	0.8	14
18	Retinal oxygen saturation in 1461 healthy children aged 7–19 and its associated factors. Acta Ophthalmologica, 2019, 97, 287-295.	0.6	9

#	Article	IF	CITATIONS
19	Distribution of scleral thickness and associated factors in 810 Chinese children and adolescents: a sweptâ€source optical coherence tomography study. Acta Ophthalmologica, 2019, 97, e410-e418.	0.6	30
20	Shanghai Time Outside to Reduce Myopia trial: design and baseline data. Clinical and Experimental Ophthalmology, 2019, 47, 171-178.	1.3	26
21	LONGITUDINAL CHANGES IN CHOROIDAL AND RETINAL THICKNESSES IN CHILDREN WITH MYOPIC SHIFT. Retina, 2019, 39, 1091-1099.	1.0	72
22	Cohort study with 4â€year followâ€up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clinical and Experimental Ophthalmology, 2018, 46, 861-872.	1.3	46
23	Design and methodology of the Shanghai child and adolescent largeâ€scale eye study (SCALE). Clinical and Experimental Ophthalmology, 2018, 46, 329-338.	1.3	16
24	Distribution Pattern of Choroidal Thickness at the Posterior Pole in Chinese Children With Myopia., 2018, 59, 1577.		41
25	Time spent in outdoor activities in relation to myopia prevention and control: a metaâ€analysis and systematic review. Acta Ophthalmologica, 2017, 95, 551-566.	0.6	344
26	CHOROIDAL THICKNESS IN HEALTHY CHINESE CHILDREN AGED 6 to 12. Retina, 2017, 37, 368-375.	1.0	41
27	Choroidal Thickness in 3001 Chinese Children Aged 6 to 19 Years Using Swept-Source OCT. Scientific Reports, 2017, 7, 45059.	1.6	60
28	Comparison of Refractive Measures of Three Autorefractors in Children and Adolescents. Optometry and Vision Science, 2017, 94, 894-902.	0.6	24
29	Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmologica, 2017, 95, e633-e640.	0.6	67
30	The Associations of Lens Power With Age and Axial Length in Healthy Chinese Children and Adolescents Aged 6 to 18 Years., 2017, 58, 5849.		28
31	Near Work Related Behaviors Associated with Myopic Shifts among Primary School Students in the Jiading District of Shanghai: A School-Based One-Year Cohort Study. PLoS ONE, 2016, 11, e0154671.	1.1	47
32	Age-Specific Prevalence of Visual Impairment and Refractive Error in Children Aged 3–10 Years in Shanghai, China. , 2016, 57, 6188.		115
33	Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography. American Journal of Ophthalmology, 2016, 168, 164-176.	1.7	140
34	Axial Length/Corneal Radius Ratio: Association with Refractive State and Role on Myopia Detection Combined with Visual Acuity in Chinese Schoolchildren. PLoS ONE, 2015, 10, e0111766.	1.1	82
35	Myopia Screening. Optometry and Vision Science, 2013, 90, 1479-1485.	0.6	24