
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672256/publications.pdf Version: 2024-02-01

ΙΟΗΝ ΚΑΤΩΑΡΑΩ

#	Article	IF	CITATIONS
1	Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2761-2771.	1.4	850
2	Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data. Biophysical Journal, 2008, 95, 2356-2367.	0.2	518
3	Bilayer Thickness Mismatch Controls Domain Size in Model Membranes. Journal of the American Chemical Society, 2013, 135, 6853-6859.	6.6	267
4	How cholesterol stiffens unsaturated lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21896-21905.	3.3	212
5	Cholesterol Shows Preference for the Interior of Polyunsaturated Lipid Membranes. Journal of the American Chemical Society, 2008, 130, 10-11.	6.6	204
6	Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2135-2148.	1.4	189
7	The location and behavior of αâ€ŧocopherol in membranes. Molecular Nutrition and Food Research, 2010, 54, 641-651.	1.5	160
8	The Effect of Cholesterol on Short- and Long-Chain Monounsaturated Lipid Bilayers as Determined by Molecular Dynamics Simulations and X-Ray Scattering. Biophysical Journal, 2008, 95, 2792-2805.	0.2	148
9	Structure and Interactions in the Anomalous Swelling Regime of Phospholipid Bilayersâ€. Langmuir, 2003, 19, 1716-1722.	1.6	142
10	Method for obtaining structure and interactions from oriented lipid bilayers. Physical Review E, 2000, 63, 011907.	0.8	141
11	Cholesterol Hydroxyl Group Is Found To Reside in the Center of a Polyunsaturated Lipid Membrane. Biochemistry, 2006, 45, 1227-1233.	1.2	135
12	Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1513, 83-94.	1.4	131
13	Location of Cholesterol in DMPC Membranes. A Comparative Study by Neutron Diffraction and Molecular Mechanics Simulationâ€. Langmuir, 2001, 17, 2019-2030.	1.6	129
14	SANS Study of the Structural Phases of Magnetically Alignable Lanthanide-Doped Phospholipid Mixtures. Langmuir, 2001, 17, 2629-2638.	1.6	128
15	Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nature Protocols, 2018, 13, 2086-2101.	5.5	128
16	Curvature Effect on the Structure of Phospholipid Bilayers. Langmuir, 2007, 23, 1292-1299.	1.6	124
17	The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biology, 2017, 15, e2002214.	2.6	123
18	SANS Study on the Effect of Lanthanide Ions and Charged Lipids on the Morphology of Phospholipid Mixtures. Biophysical Journal, 2002, 82, 2487-2498.	0.2	117

#	Article	IF	CITATIONS
19	Magnetically Alignable Phase of Phospholipid "Bicelle―Mixtures Is a Chiral Nematic Made Up of Wormlike Micelles. Langmuir, 2004, 20, 7893-7897.	1.6	117
20	"Bicellar―Lipid Mixtures as used in Biochemical and Biophysical Studies. Die Naturwissenschaften, 2005, 92, 355-366.	0.6	117
21	Tocopherol Activity Correlates with Its Location in a Membrane: A New Perspective on the Antioxidant Vitamin E. Journal of the American Chemical Society, 2013, 135, 7523-7533.	6.6	114
22	Cholesterol Is Found To Reside in the Center of a Polyunsaturated Lipid Membrane. Biochemistry, 2008, 47, 7090-7096.	1.2	113
23	Phase behavior and domain size in sphingomyelin-containing lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1302-1313.	1.4	112
24	Cholesterol in Bilayers with PUFA Chains: Doping with DMPC or POPC Results in Sterol Reorientation and Membrane-Domain Formation. Biochemistry, 2010, 49, 7485-7493.	1.2	109
25	Mechanical Properties of Nanoscopic Lipid Domains. Journal of the American Chemical Society, 2015, 137, 15772-15780.	6.6	108
26	Subnanometer Structure of an Asymmetric Model Membrane: Interleaflet Coupling Influences Domain Properties. Langmuir, 2016, 32, 5195-5200.	1.6	105
27	Comprehensive Examination of Mesophases Formed by DMPC and DHPC Mixtures. Langmuir, 2005, 21, 5356-5361.	1.6	103
28	Adsorbed to a Rigid Substrate, Dimyristoylphosphatidylcholine Multibilayers Attain Full Hydration in All Mesophases. Biophysical Journal, 1998, 75, 2157-2162.	0.2	100
29	The Observation of Highly Ordered Domains in Membranes with Cholesterol. PLoS ONE, 2013, 8, e66162.	1.1	100
30	¹ H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. Langmuir, 2017, 33, 3731-3741.	1.6	100
31	Oblique Membrane Insertion of Viral Fusion Peptide Probed by Neutron Diffractionâ€. Biochemistry, 2000, 39, 6581-6585.	1.2	98
32	Comparing Membrane Simulations to Scattering Experiments: Introducing the SIMtoEXP Software. Journal of Membrane Biology, 2010, 235, 43-50.	1.0	97
33	Areas of Monounsaturated Diacylphosphatidylcholines. Biophysical Journal, 2009, 97, 1926-1932.	0.2	94
34	Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: A small-angle neutron scattering study. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1720, 84-91.	1.4	92
35	Scattering Density Profile Model of POPG Bilayers As Determined by Molecular Dynamics Simulations and Small-Angle Neutron and X-ray Scattering Experiments. Journal of Physical Chemistry B, 2012, 116, 232-239.	1.2	92
36	Structure and water permeability of fully hydrated diphytanoylPC. Chemistry and Physics of Lipids, 2010, 163, 630-637.	1.5	89

#	Article	IF	CITATIONS
37	The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations. Soft Matter, 2014, 10, 3716.	1.2	84
38	Cholesterol's location in lipid bilayers. Chemistry and Physics of Lipids, 2016, 199, 17-25.	1.5	83
39	Effect of Cations on the Structure of Bilayers Formed by Lipopolysaccharides Isolated from Pseudomonas aeruginosa PAO1. Journal of Physical Chemistry B, 2008, 112, 8057-8062.	1.2	82
40	Molecular Structures of Fluid Phosphatidylethanolamine Bilayers Obtained from Simulation-to-Experiment Comparisons and Experimental Scattering Density Profiles. Journal of Physical Chemistry B, 2015, 119, 1947-1956.	1.2	81
41	Chain Conformation of a New Class of PEC-Based Thermoresponsive Polymer Brushes Grafted on Silicon as Determined by Neutron Reflectometry. Langmuir, 2009, 25, 10271-10278.	1.6	79
42	Line Tension Controls Liquid-DisorderedÂ+ Liquid-Ordered Domain Size Transition in Lipid Bilayers. Biophysical Journal, 2017, 112, 1431-1443.	0.2	78
43	Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology. Journal of the American Chemical Society, 2013, 135, 14932-14935.	6.6	73
44	Entropy-Driven Softening of Fluid Lipid Bilayers by Alamethicin. Langmuir, 2007, 23, 11705-11711.	1.6	70
45	Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering. Membranes, 2015, 5, 454-472.	1.4	70
46	Structure and Hydration of Highly-Branched, Monodisperse Phytoglycogen Nanoparticles. Biomacromolecules, 2016, 17, 735-743.	2.6	70
47	Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles. Biophysical Journal, 2018, 114, 146-157.	0.2	70
48	Description of Hydration Water in Protein (Green Fluorescent Protein) Solution. Journal of the American Chemical Society, 2017, 139, 1098-1105.	6.6	68
49	Spontaneously Formed Unilamellar Vesicles with Path-Dependent Size Distribution. Langmuir, 2005, 21, 6656-6661.	1.6	66
50	Model-based approaches for the determination of lipid bilayer structure from small-angle neutron and X-ray scattering data. European Biophysics Journal, 2012, 41, 875-890.	1.2	66
51	Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Soft Matter, 2015, 11, 130-138.	1.2	65
52	Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1985-1993.	1.4	65
53	On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. Soft Matter, 2015, 11, 9055-9072.	1.2	63
54	Global small-angle X-ray scattering data analysis for multilamellar vesicles: the evolution of the scattering density profile model. Journal of Applied Crystallography, 2014, 47, 173-180.	1.9	62

#	Article	IF	CITATIONS
55	Lipid bilayer thickness determines cholesterol's location in model membranes. Soft Matter, 2016, 12, 9417-9428.	1.2	61
56	Method of separated form factors for polydisperse vesicles. Journal of Applied Crystallography, 2006, 39, 293-303.	1.9	59
57	Interactions of the Anticancer Drug Tamoxifen with Lipid Membranes. Biophysical Journal, 2015, 108, 2492-2501.	0.2	55
58	Lipid Bilayers. , 2001, , .		54
59	Highly Stable Phospholipid Unilamellar Vesicles from Spontaneous Vesiculation:Â A DLS and SANS Study. Journal of Physical Chemistry B, 2005, 109, 609-616.	1.2	54
60	Absence of a vestigial vapor pressure paradox. Physical Review E, 1999, 59, 7018-7024.	0.8	52
61	The Functional Significance of Lipid Diversity: Orientation of Cholesterol in Bilayers Is Determined by Lipid Species. Journal of the American Chemical Society, 2009, 131, 16358-16359.	6.6	51
62	Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes. European Biophysics Journal, 2012, 41, 901-913.	1.2	51
63	Water Distribution in Multilayers of Weak Polyelectrolytes. Langmuir, 2006, 22, 5137-5143.	1.6	50
64	Modulation of the Polymorphism of the Palmitic Acid/Cholesterol System by the pH. Langmuir, 2003, 19, 1089-1097.	1.6	48
65	Neutron Diffraction Study ofPseudomonasaeruginosaLipopolysaccharide Bilayers. Journal of Physical Chemistry B, 2007, 111, 2477-2483.	1.2	48
66	Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. Journal of Applied Crystallography, 2017, 50, 419-429.	1.9	48
67	What determines the thickness of a biological membrane. General Physiology and Biophysics, 2009, 28, 117-125.	0.4	47
68	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	1.1	47
69	Nanosecond lipid dynamics in membranes containing cholesterol. Soft Matter, 2014, 10, 2600.	1.2	46
70	Revisiting the bilayer structures of fluid phase phosphatidylglycerol lipids: Accounting for exchangeable hydrogens. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2966-2969.	1.4	46
71	Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles. Biophysical Journal, 2019, 116, 860-873.	0.2	44
72	<i>Bacillus subtilis</i> Lipid Extract, A Branched-Chain Fatty Acid Model Membrane. Journal of Physical Chemistry Letters, 2017, 8, 4214-4217.	2.1	42

#	Article	IF	CITATIONS
73	The study of liposomes, lamellae and membranes using neutrons and X-rays. Current Opinion in Colloid and Interface Science, 2007, 12, 17-22.	3.4	41
74	Formation of Kinetically Trapped Nanoscopic Unilamellar Vesicles from Metastable Nanodiscs. Langmuir, 2011, 27, 14308-14316.	1.6	41
75	Peptide-Induced Lipid Flip-Flop in Asymmetric Liposomes Measured by Small Angle Neutron Scattering. Langmuir, 2019, 35, 11735-11744.	1.6	41
76	Direct evidence for the partial dehydration of phosphatidylethanolamine bilayers on approaching the hexagonal phase. Biochemistry, 1993, 32, 10700-10707.	1.2	40
77	Lipid Rafts: Buffers of Cell Membrane Physical Properties. Journal of Physical Chemistry B, 2019, 123, 2050-2056.	1.2	40
78	Temperature Driven Annealing of Perforations in Bicellar Model Membranes. Langmuir, 2011, 27, 4838-4847.	1.6	39
79	Dimyristoyl Phosphatidylcholine: A Remarkable Exception to α-Tocopherol's Membrane Presence. Journal of the American Chemical Society, 2014, 136, 203-210.	6.6	38
80	Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties. Biophysical Journal, 2017, 113, 2004-2015.	0.2	38
81	Interactions between Ether Phospholipids and Cholesterol As Determined by Scattering and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 14829-14838.	1.2	36
82	Morphological Characterization of DMPC/CHAPSO Bicellar Mixtures: A Combined SANS and NMR Study. Langmuir, 2013, 29, 15943-15957.	1.6	36
83	α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations. Biophysical Journal, 2015, 109, 1608-1618.	0.2	36
84	Calcium and Zinc Differentially Affect the Structure of Lipid Membranes. Langmuir, 2017, 33, 3134-3141.	1.6	34
85	Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. Optics Letters, 2018, 43, 2038.	1.7	34
86	Spontaneously Formed Unilamellar Vesicles. Methods in Enzymology, 2009, 465, 3-20.	0.4	33
87	Ion distribution in multilayers of weak polyelectrolytes: A neutron reflectometry study. Journal of Chemical Physics, 2008, 129, 084901.	1.2	32
88	Using small-angle neutron scattering to detect nanoscopic lipid domains. Chemistry and Physics of Lipids, 2013, 170-171, 19-32.	1.5	32
89	Effect of the Hydrophilic Size on the Structural Phases of Aqueous Nonionic Gemini Surfactant Solutions. Langmuir, 2004, 20, 9061-9068.	1.6	31

 $_{90}$ Characterization of protein resistant, grafted methacrylate polymer layers bearing oligo(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
91	Phosphatidylserine Asymmetry Promotes the Membrane Insertion of a Transmembrane Helix. Biophysical Journal, 2019, 116, 1495-1506.	0.2	31
92	<i>α-</i> Tocopherol's Location in Membranes Is Not Affected by Their Composition. Langmuir, 2015, 31, 4464-4472.	1.6	30
93	Monolayer Film Behavior of Lipopolysaccharide from Pseudomonas aeruginosa at the Airâ^'Water Interface. Biomacromolecules, 2008, 9, 2799-2804.	2.6	29
94	Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. Journal of the American Chemical Society, 2020, 142, 12715-12729.	6.6	29
95	Comparison of Solution Structures and Stabilities of Native, Partially Unfolded and Partially Refolded Pepsin. Biochemistry, 2006, 45, 13982-13992.	1.2	28
96	Asymmetric Distribution of Cholesterol in Unilamellar Vesicles of Monounsaturated Phospholipids. Langmuir, 2009, 25, 13522-13527.	1.6	28
97	Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors. Nanotechnology, 2011, 22, 195102.	1.3	28
98	Growth kinetics of lipid-based nanodiscs to unilamellar vesicles—A time-resolved small angle neutron scattering (SANS) study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1025-1035.	1.4	28
99	Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates. Langmuir, 2015, 31, 12920-12928.	1.6	27
100	Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes. Langmuir, 2017, 33, 10016-10026.	1.6	27
101	Small-Angle Neutron Scattering to Detect Rafts and Lipid Domains. Methods in Molecular Biology, 2007, 398, 231-244.	0.4	27
102	Bicellar Mixtures Containing Pluronic F68: Morphology and Lateral Diffusion from Combined SANS and PFG NMR Studies. Langmuir, 2010, 26, 2630-2638.	1.6	26
103	Water and Lipid Bilayers. Sub-Cellular Biochemistry, 2015, 71, 45-67.	1.0	26
104	Molecular Picture of the Transient Nature of Lipid Rafts. Langmuir, 2020, 36, 4887-4896.	1.6	26
105	Scattering from laterally heterogeneous vesicles. II. The form factor. Journal of Applied Crystallography, 2007, 40, 513-525.	1.9	25
106	Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter, 2009, 5, 2694.	1.2	25
107	Deciphering Melatonin-Stabilized Phase Separation in Phospholipid Bilayers. Langmuir, 2019, 35, 12236-12245.	1.6	25
108	Effects of Charge Density and Thermal History on the Morphologies of Spontaneously Formed Unilamellar Vesicles, Journal of Physical Chemistry B, 2010, 114, 5729-5735	1.2	24

#	Article	IF	CITATIONS
109	Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: A small-angle neutron scattering and fluorescence study. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 384-401.	1.4	24
110	Molecular Structure of Sphingomyelin in Fluid Phase Bilayers Determined by the Joint Analysis of Small-Angle Neutron and X-ray Scattering Data. Journal of Physical Chemistry B, 2020, 124, 5186-5200.	1.2	24
111	Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry, 2021, 13, 1356.	1.1	23
112	Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Physical Chemistry Chemical Physics, 2017, 19, 25859-25869.	1.3	22
113	Scattering from laterally heterogeneous vesicles. I. Model-independent analysis. Journal of Applied Crystallography, 2006, 39, 791-796.	1.9	21
114	The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data. Chemistry and Physics of Lipids, 2020, 229, 104892.	1.5	21
115	The influence of curvature on membrane domains. European Biophysics Journal, 2008, 37, 665-671.	1.2	20
116	Controlled release mechanisms of spontaneously forming unilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1467-1471.	1.4	20
117	The antioxidant vitamin E as a membrane raft modulator: Tocopherols do not abolish lipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183189.	1.4	20
118	Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies. Journal of Physical Chemistry B, 2016, 120, 8438-8448.	1.2	19
119	Structure, Hydration, and Interactions of Native and Hydrophobically Modified Phytoglycogen Nanoparticles. Biomacromolecules, 2020, 21, 4053-4062.	2.6	19
120	Polymorphism in Myristoylpalmitoylphosphatidylcholine. Chemistry and Physics of Lipids, 1999, 100, 101-113.	1.5	18
121	Structure from substrate supported lipid bilayers (Review). Biointerphases, 2008, 3, FB55-FB63.	0.6	18
122	Reply to Nagle et al.: The universal stiffening effects of cholesterol on lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
123	Small-Angle Scattering from Homogenous and Heterogeneous Lipid Bilayers. Behavior Research Methods, 2010, , 201-235.	2.3	17
124	A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers. Journal of Chemical Theory and Computation, 2017, 13, 916-925.	2.3	17
125	Structural Phase Behavior of High-Concentration, Alignable Biomimetic Bicelle Mixtures. Macromolecular Symposia, 2005, 219, 135-146.	0.4	16
126	Lipid-based nanodiscs as models for studying mesoscale coalescence – a transport limited case. Soft Matter, 2014, 10, 5055.	1.2	16

#	Article	IF	CITATIONS
127	Lateral heterogeneity and domain formation in cellular membranes. Chemistry and Physics of Lipids, 2020, 232, 104976.	1.5	16
128	Elasticity and Inverse Temperature Transition in Elastin. Journal of Physical Chemistry Letters, 2015, 6, 4018-4025.	2.1	14
129	Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains. Journal of Applied Crystallography, 2015, 48, 1391-1404.	1.9	14
130	Biomembrane Structure and Material Properties Studied With Neutron Scattering. Frontiers in Chemistry, 2021, 9, 642851.	1.8	14
131	Spontaneously Forming Ellipsoidal Phospholipid Unilamellar Vesicles and Their Interactions with Helical Domains of Saposin C. Langmuir, 2006, 22, 11028-11033.	1.6	13
132	Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids. Protein Expression and Purification, 2016, 124, 62-67.	0.6	13
133	Anomalous Nanoscale Optoacoustic Phonon Mixing in Nematic Mesogens. Journal of Physical Chemistry Letters, 2018, 9, 2546-2553.	2.1	13
134	Ion Pairing Mediates Molecular Organization Across Liquid/Liquid Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 33734-33743.	4.0	13
135	A structural study of the myristoylated N-terminus of ARF1. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1668, 138-144.	1.4	12
136	Soft Matter Sample Environments for Time-Resolved Small Angle Neutron Scattering Experiments: A Review. Applied Sciences (Switzerland), 2021, 11, 5566.	1.3	12
137	Ion Pairing and Molecular Orientation at Liquid/Liquid Interfaces: Self-Assembly and Function. Journal of Physical Chemistry B, 2022, 126, 2316-2323.	1.2	12
138	Neutron diffraction studies of viral fusion peptides. Physica B: Condensed Matter, 2000, 276-278, 495-498.	1.3	11
139	Morphology-Induced Defects Enhance Lipid Transfer Rates. Langmuir, 2016, 32, 9757-9764.	1.6	11
140	Structural simulation of free radical damage in a model membrane system: a small-angle X-ray diffraction study. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 243-250.	1.4	10
141	Models for randomly distributed nanoscopic domains on spherical vesicles. Physical Review E, 2018, 97, 062405.	0.8	10
142	Time-of-flight Bragg scattering from aligned stacks of lipid bilayers using the Liquids Reflectometer at the Spallation Neutron Source. Journal of Applied Crystallography, 2012, 45, 1219-1227.	1.9	9
143	Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument. Journal of Applied Crystallography, 2018, 51, 235-241.	1.9	9
144	Phonon-mediated lipid raft formation in biological membranes. Chemistry and Physics of Lipids, 2020, 232, 104979.	1.5	9

#	Article	IF	CITATIONS
145	Solvent-induced membrane stress in biofuel production: molecular insights from small-angle scattering and all-atom molecular dynamics simulations. Green Chemistry, 2020, 22, 8278-8288.	4.6	9
146	Disentangling Memristive and Memcapacitive Effects in Droplet Interface Bilayers Using Dynamic Impedance Spectroscopy. Advanced Electronic Materials, 2022, 8, .	2.6	9
147	Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome. Frontiers in Microbiology, 2020, 11, 914.	1.5	8
148	Scattering from laterally heterogeneous vesicles. III. Reconciling past and present work. Journal of Applied Crystallography, 2007, 40, 771-772.	1.9	7
149	Domains on a Sphere: Neutron Scattering, Models, and Mathematical Formalism. Chemistry and Physics of Lipids, 2019, 222, 47-50.	1.5	7
150	Squeezing Out Interfacial Solvation: The Role of Hydrogen-Bonding in the Structural and Orientational Freedom of Molecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 2273-2280.	2.1	7
151	Adapting a triple-axis spectrometer for small angle neutron scattering measurements. Review of Scientific Instruments, 2008, 79, 095102.	0.6	6
152	Formation mechanism of self-assembled unilamellar vesiclesSpecial issue on Neutron Scattering in Canada. Canadian Journal of Physics, 2010, 88, 735-740.	0.4	6
153	Biomembranes research using thermal and cold neutrons. Chemistry and Physics of Lipids, 2015, 192, 41-50.	1.5	6
154	Nanoscale <i>Q</i> -Resolved Phonon Dynamics in Block Copolymers. ACS Applied Nano Materials, 2018, 1, 4918-4926.	2.4	6
155	Influence of ceramide on lipid domain stability studied with small-angle neutron scattering: The role of acyl chain length and unsaturation. Chemistry and Physics of Lipids, 2022, 245, 105205.	1.5	6
156	2,2′â€Bis(monoacylglycero) PO ₄ (BMP), but Not 3,1′â€BMP, Increases Membrane Curvature St to Enhance αâ€Tocopherol Transfer Protein Binding to Membranes. Lipids, 2015, 50, 323-328.	iress 0.7	5
157	The influence of curvature on domain distribution in binary mixture membranes. Soft Matter, 2019, 15, 6642-6649.	1.2	5
158	Fractal boundaries underpin the 2D melting of biomimetic rafts. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183249.	1.4	5
159	Aligned Lipid—Water Systems. , 2001, , 25-45.		5
160	Laterally Resolved Small-Angle Scattering Intensity from Lipid Bilayer Simulations: An Exact and a Limited-Range Treatment. Journal of Chemical Theory and Computation, 2020, 16, 5287-5300.	2.3	4
161	Spontaneously Forming Unilamellar Phospholipid Vesicles. Macromolecular Symposia, 2005, 219, 123-134.	0.4	3
162	Molecular Structure of Phosphatidylglycerol Bilayers: Fluid Phase Lipid Areas and Bilayer Thicknesses as a Function of Temperature. Biophysical Journal, 2012, 102, 504a.	0.2	3

#	Article	IF	CITATIONS
163	Double membrane formation in heterogeneous vesicles. Soft Matter, 2020, 16, 8806-8817.	1.2	3
164	Changes Experienced by Low-Concentration Lipid Bicelles as a Function of Temperature. Langmuir, 2022, , .	1.6	3
165	Interleaflet Coupling in Asymmetric Membranes: Protocols and Revelations. Biophysical Journal, 2018, 114, 604a.	0.2	2
166	Cholesterol Affects the Bending Rigidity of DOPC Membranes. Biophysical Journal, 2019, 116, 328a.	0.2	2
167	Lipid Rafts in Bacteria: Structure and Function. , 2019, , 1-30.		2
168	Geometryâ€Dependent Nonequilibrium Steady‣tate Diffusion and Adsorption of Lipid Vesicles in Micropillar Arrays. Advanced Materials Interfaces, 2019, 6, 1900054.	1.9	2
169	A calorimetric, volumetric and combined SANS and SAXS study of hybrid siloxane phosphocholine bilayers. Chemistry and Physics of Lipids, 2021, 241, 105149.	1.5	2
170	Experiment and Simulation Reveal the Bending Properties of Nanoscopic Lipid Domains. Biophysical Journal, 2015, 108, 31a.	0.2	1
171	Hydrocarbon Thickness Dictates Cholesterol's Location, Orientation and Motion in a Phospholipid Bilayer. Biophysical Journal, 2015, 108, 86a.	0.2	1
172	Description of Hydration Water in Protein (GFP) Solution. Biophysical Journal, 2017, 112, 201a.	0.2	1
173	Nanoscale Structure of Lipid Bilayers Revealed by In-Silico and Experimental Small Angle Neutron Scattering. Biophysical Journal, 2017, 112, 468a.	0.2	1
174	Cyclodextrin-Mediated Lipid Exchange Monitored with FRET. Biophysical Journal, 2018, 114, 97a.	0.2	1
175	Stiffening of Phosphocholine Membranes by Cholesterol. Biophysical Journal, 2020, 118, 86a.	0.2	1
176	Additively Manufactured NdFeB Polyphenylene Sulfide Halbach Magnets to Generate Variable Magnetic Fields for Neutron Reflectometry. 3D Printing and Additive Manufacturing, 0, , .	1.4	1
177	Multi-scale applications of neutron scattering and imaging. , 2014, , .		Ο
178	Translocase Activity and Asymmetric Model Membranes Probed by Neutron Scattering. Biophysical Journal, 2016, 110, 179a.	0.2	0
179	A Demonstration of Lipid Flip-Flip in Free-Floating Liposomes. Biophysical Journal, 2016, 110, 17a.	0.2	0
180	Structural Characterization on Asymmetric Lipid Vesicles at Subnanometer Resolution. Biophysical Journal, 2016, 110, 36a.	0.2	0

#	Article	IF	CITATIONS
181	The Molecular Structure of Sphingomyelin in Fluid Phase Bilayers Determined by the Joint Analysis of Neutron and X-Ray Scattering Data. Biophysical Journal, 2017, 112, 223a.	0.2	0
182	Investigation of Transbilayer Coupling in Gel-Fluid Asymmetric Lipid Vesicles. Biophysical Journal, 2017, 112, 223a-224a.	0.2	0
183	Neutron Scattering to Study Membrane Systems: From Model Membranes to Living Cells. Biophysical Journal, 2017, 112, 224a.	0.2	Ο
184	Rhodopsin Dimerization in Membrane Bilayers Revealed by Small Angle Neutron Scattering. Biophysical Journal, 2017, 112, 479a-480a.	0.2	0
185	Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations. Biophysical Journal, 2017, 112, 79a.	0.2	Ο
186	Low-Enthalpy Phase Transitions Yield Entropy-Driven Lateral Reorganization and Phase Separation in Synthetic and Natural Multi-Component DIB Membranes. Biophysical Journal, 2017, 112, 84a.	0.2	0
187	Bilayer Defects Facilitate DPPC Flip-Flop. Biophysical Journal, 2017, 112, 174a-175a.	0.2	0
188	Lipid membranes loaded with Ca ²⁺ and Zn ²⁺ cations. Journal of Physics: Conference Series, 2017, 848, 012008.	0.3	0
189	G Protein-GPCR Interaction Studied by SANS. Biophysical Journal, 2018, 114, 109a.	0.2	0
190	Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Lipid Membranes. Biophysical Journal, 2018, 114, 551a-552a.	0.2	0
191	Neutron Spin Echo Detects Effects of the pH-Low Insertion Peptide on Membrane Thickness Fluctuations. Biophysical Journal, 2018, 114, 612a.	0.2	Ο
192	Curvature-Mediated Transmembrane Coupling in Asymmetric Lipids Vesicles. Biophysical Journal, 2018, 114, 380a.	0.2	0
193	The Role of Ceramide Structure in Regulating the Stability of Membrane Domains. Biophysical Journal, 2019, 116, 78a.	0.2	0
194	PS Membrane Asymmetry Influences the Folding and Insertion of a Transmembrane Helix. Biophysical Journal, 2019, 116, 519a.	0.2	0
195	Cannabinoid Receptor CB2 Oligomerization in a Lipid Matrix. Biophysical Journal, 2019, 116, 234a.	0.2	0
196	Hierarchical Membrane Dynamics in Phase-Separated Model Membranes. Biophysical Journal, 2020, 118, 84a.	0.2	0
197	Highly Dynamic C99 Oligomeric Structure in Cholesterol and Sphingomyelin Rich Bicelles. Biophysical Journal, 2020, 118, 12a.	0.2	0
198	The Effect of Melatonin and Azithromycin on Model Pulmonary Membranes. Biophysical Journal, 2021, 120, 226a.	0.2	0

#	Article	IF	CITATIONS
199	X-Ray Scattering from Lipid Membranes. , 2018, , 1-8.		0
200	Neutron spin–echo detects effects of the pH-low insertion peptide on membrane thickness fluctuations. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a296-a296.	0.0	0
201	Nanoscopic domains in model and bacterial membranes. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a223-a223.	0.0	0
202	Neutron-based static and dynamic biomembrane studies enabled by deuterium. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a397-a397.	0.0	0
203	Lipid Rafts in Bacteria: Structure and Function. , 2020, , 3-32.		0