Zhihong Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672165/publications.pdf

Version: 2024-02-01

		186265	1	68389	
52	2,893	28		53	
papers	citations	h-index		g-index	
53	53	53		3764	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	MoS ₂ Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 8526-8535.	14.6	447
2	High-Performance Anode Material Sr ₂ FeMo _{0.65} Ni _{0.35} O _{6â^'Î} with <i>In Situ</i> Exsolved Nanoparticle Catalyst. ACS Nano, 2016, 10, 8660-8669.	14.6	287
3	Watermelonâ€Like Structured SiO <i>_x</i> –TiO ₂ @C Nanocomposite as a Highâ€Performance Lithiumâ€lon Battery Anode. Advanced Functional Materials, 2018, 28, 1605711.	14.9	175
4	Carbonâ€Sheathed MoS ₂ Nanothorns Epitaxially Grown on CNTs: Electrochemical Application for Highly Stable and Ultrafast Lithium Storage. Advanced Energy Materials, 2018, 8, 1700174.	19.5	141
5	MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon, 2017, 119, 91-100.	10.3	120
6	Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochimica Acta, 2015, 180, 947-956.	5.2	96
7	High-Performance SmBaMn (sub) 2 (sub) 0 (sub) $5+\hat{l}'$ (sub) Electrode for Symmetrical Solid Oxide Fuel Cell. Chemistry of Materials, 2019, 31, 3784-3793.	6.7	88
8	SiO –C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. Journal of Power Sources, 2015, 274, 542-550.	7.8	85
9	Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3- as promising cathodes for intermediate temperature solid oxide fuel cell. Applied Catalysis B: Environmental, 2021, 295, 120264.	20.2	77
10	Superior High-Rate and Ultralong-Lifespan Na ₃ @C Cathode by Enhancing the Conductivity Both in Bulk and on Surface. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35963-35971.	8.0	74
11	Novel cobalt-free BaFe _{1â^'x} Gd _x O _{3â^'Î^} perovskite membranes for oxygen separation. Journal of Materials Chemistry A, 2016, 4, 10454-10466.	10.3	72
12	Effects of Co Doping on the Electrochemical Performance of Double Perovskite Oxide Sr ₂ MgMoO _{6â^Î} as an Anode Material for Solid Oxide Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 9734-9743.	3.1	68
13	Investigation of In-doped BaFeO _{3â^Î} perovskite-type oxygen permeable membranes. Journal of Materials Chemistry A, 2015, 3, 6202-6214.	10.3	68
14	Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr ₂ FeMo _{2/3} Mg _{1/3} O _{6â°} <i>_{i'}</i> for Solid Oxide Fuel Cells. Advanced Energy Materials, 2018, 8, 1800062.	19.5	62
15	Computational and experimental understanding of Al-doped Na3V2-xAlx(PO4)3 cathode material for sodium ion batteries: Electronic structure, ion dynamics and electrochemical properties. Electrochimica Acta, 2018, 282, 510-519.	5.2	60
16	Delicate lattice modulation enables superior Na storage performance of Na ₃ V ₂ (PO ₄) ₃ as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium. Journal of Materials Chemistry A, 2019, 7, 9807-9814.	10.3	56
17	Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo ₂ O _{5+<i>\hat{l}</i>} /Gd _{0.1} Ce _{1.9} O _{2\hat{a}} coherent interface. Journal of Materials Chemistry A, 2022, 10, 3495-3505.	10.3	56
18	Synthesis and electrochemical properties of MoO3/C composite as anode material for lithium-ion batteries. Journal of Power Sources, 2013, 226, 107-111.	7.8	51

#	Article	IF	CITATIONS
19	Micro/Nano Na ₃ V ₂ (PO ₄) ₃ /N-Doped Carbon Composites with a Hierarchical Porous Structure for High-Rate Pouch-Type Sodium-Ion Full-Cell Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8445-8454.	8.0	51
20	Synthesis and electrical properties of Al-doped Sr2MgMoO6-δ as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 7257-7264.	7.1	47
21	Evaluation of La _{0.3} Sr _{0.7} Ti _{1â^'x} Co _x O ₃ as a potential cathode material for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 10290-10299.	10.3	46
22	(101) Plane-Oriented SnS ₂ Nanoplates with Carbon Coating: A High-Rate and Cycle-Stable Anode Material for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35880-35887.	8.0	46
23	Electrochemical performance of Pr1â^'xYxBaCo2O5+Î^ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 16365-16372.	7.1	41
24	High CO2 tolerance oxygen permeation membranes BaFe0.95-Ca0.05Ti O3 Journal of Membrane Science, 2018, 550, 302-312.	8.2	41
25	Electrical, Chemical, and Electrochemical Properties of Double Perovskite Oxides Sr ₂ Mg _{1â€"<i>x</i>} Ni _{<i>x</i>} MoO _{6â^'Î<} as Anode Materials for Solid Oxide Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 18853-18860.	3.1	39
26	Electrochemical properties of BaZr0.1Ce0.7Y0.1Yb0.1O3Ââ^'ÂÎ'-Nd1.95NiO4Â+ÂÎ' composite cathode for protonic ceramic fuel cells. International Journal of Hydrogen Energy, 2015, 40, 2800-2807.	7.1	35
27	Lattice structure, sintering behavior and electrochemical performance of La1.7Ca0.3Ni1â^xCuxO4+Î as cathode material for intermediate-temperature solid oxide fuel cell. Journal of Power Sources, 2013, 240, 759-765.	7.8	31
28	Design and synthesis of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 605-611.	10.3	30
29	Novel ReBaCo _{1.5} Mn _{0.5} O _{5+Î} (Re: La, Pr, Nd, Sm, Gd and Y) perovskite oxide: influence of manganese doping on the crystal structure, oxygen nonstoichiometry, thermal expansion, transport properties, and application as a cathode material in solid oxide fuel cells. lournal of Materials Chemistry A. 2018. 6. 13271-13285.	10.3	30
30	Effective Ca-doping in Y _{1â^'x} Ca _x BaCo ₂ O _{5+Î} cathode materials for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2017, 5, 25641-25651.	10.3	29
31	Assessment of layered La2-x(Sr,Ba)xCuO4-δ oxides as potential cathode materials for SOFCs. International Journal of Hydrogen Energy, 2018, 43, 15492-15504.	7.1	29
32	Synthesis of NiO/Ni nanocomposite anode material for high rate lithium-ion batteries. Materials Letters, 2015, 142, 67-70.	2.6	27
33	Electrical conductivity and cell performance of La0.3Sr0.7Ti1â°'xCrxO3â^'δ perovskite oxides used as anode and interconnect material for SOFCs. International Journal of Hydrogen Energy, 2013, 38, 1068-1073.	7.1	26
34	Optimization of strontium molybdate based composite anode for solid oxide fuel cells. Journal of Power Sources, 2015, 274, 568-574.	7.8	26
35	A SmBaCo ₂ O _{5+δ} double perovskite with epitaxially grown Sm _{0.2} Ce _{0.8} O _{2â´´Î} nanoparticles as a promising cathode for solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 14162-14170.	10.3	25
36	Synthesis and densification of lanthanum silicate apatite electrolyte for intermediate temperature solid oxide fuel cell via co-precipitation method. Journal of the European Ceramic Society, 2014, 34, 1563-1569.	5.7	23

#	Article	IF	CITATIONS
37	Effect of titanium doping on chemical and structural stability and electrical properties of proton-conducting solid electrolyte BaCe0.8Sm0.2O3â^. Journal of Membrane Science, 2016, 508, 104-112.	8.2	18
38	Mn-rich SmBaCo0.5Mn1.5O5+ $\hat{\Gamma}$ double perovskite cathode material for SOFCs. International Journal of Hydrogen Energy, 2019, 44, 27587-27599.	7.1	18
39	Unveiling the roles of alumina as a sintering aid in <scp>Liâ€Garnet</scp> solid electrolyte. International Journal of Energy Research, 2020, 44, 9177-9184.	4.5	17
40	A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs: Synthesis, structural and electrical properties. Journal of the European Ceramic Society, 2019, 39, 424-431.	5.7	16
41	Structure, Stoichiometry, and Electrochemical Performance of Li ₂ CoTi ₃ O ₈ as an Anode Material for Lithiumâ€lon Batteries. ChemPlusChem, 2013, 78, 1530-1535.	2.8	15
42	Structure and oxygen permeability of BaCo0.7Fe0.3â^'In O3â^' ceramic membranes. Journal of Membrane Science, 2015, 492, 559-567.	8.2	15
43	Modification of electrocatalytic activity of BaCe0.40Sm0.20Fe0.40O3 $\hat{a}^{*}\hat{l}$ with Co3O4 as cathode for proton-conducting solid oxide fuel cell. Electrochimica Acta, 2013, 108, 369-375.	5 . 2	13
44	Electrochemical Performance of La 1.5 Sr 0.5 Ni 1-x Fe x O 4+ \hat{I} Cathode for IT-SOFCs. Electrochimica Acta, 2016, 219, 394-400.	5. 2	13
45	Unveiling the effects of A-site substitutions on the oxygen ion migration in A _{2â°'x} A′ _x NiO _{4+Î′} by first principles calculations. Physical Chemistry Chemical Physics, 2018, 20, 21685-21692.	2.8	12
46	Versatile Application of Redox Processes for REBaCoMnO $<$ sub $>5+\hat{l}'sub> (RE: La, Pr, Nd, Sm, Gd, and Y) Oxides. Journal of Physical Chemistry C, 2019, 123, 48-61.$	3.1	10
47	LaxPr4â^'xNi3O10â^'Î: Mixed A-Site Cation Higher-Order Ruddlesden-Popper Phase Materials as Intermediate-Temperature Solid Oxide Fuel Cell Cathodes. Crystals, 2020, 10, 428.	2.2	10
48	Effective oxygen reduction on A-site substituted LaCuO _{3â⁻δ} : toward air electrodes for SOFCs based on perovskite-type copper oxides. Journal of Materials Chemistry A, 2019, 7, 27403-27416.	10.3	9
49	Unveiling the Interface Structure of the Exsolved Co–Fe Alloy Nanoparticles from Double Perovskite and Its Application in Solid Oxide Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3287-3294.	8.0	8
50	A Ti-site deficient spinel Li2CoTi3O8 anode with superior cycling performance for lithium-ion batteries. Solid State Ionics, 2020, 355, 115423.	2.7	5
51	Characterization and electrochemical performance of (Ba0.6Sr0.4)1â^3xLaxCo0.85Ti0.15O3 as cathode materials for intermediate temperature solid oxide fuel cell. Ceramics International, 2013, 39, 4363-4367.	4.8	3

Lithiumâ€lon Batteries: Carbonâ€Sheathed MoS₂ Nanothorns Epitaxially Grown on CNTs:
52 Electrochemical Application for Highly Stable and Ultrafast Lithium Storage (Adv. Energy Mater.) Tj ETQq0 0 0 rgBT1\Dserlock310 Tf 50 1