Isabelle Michaud-Soret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TiO ₂ nanoparticles coated with bio-inspired ligands for the safer-by-design development of photocatalytic paints. Environmental Science: Nano, 2021, 8, 297-310.	4.3	7
2	Towards the development of safer by design TiO ₂ -based photocatalytic paint: impacts and performances. Environmental Science: Nano, 2021, 8, 758-772.	4.3	9
3	Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies. Nanoscale Horizons, 2020, 5, 507-513.	8.0	11
4	The pathogen <i>Pseudomonas aeruginosa</i> optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics, 2020, 12, 2108-2120.	2.4	20
5	Thiolate-Capped Silver Nanoparticles: Discerning Direct Grafting from Sulfidation at the Metal–Ligand Interface by Interrogating the Sulfur Atom. Journal of Physical Chemistry C, 2020, 124, 13467-13478.	3.1	18
6	Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environmental Science: Nano, 2020, 7, 1373-1387.	4.3	16
7	The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism. Metallomics, 2019, 11, 1219-1229.	2.4	17
8	New insights into the tetrameric family of the Fur metalloregulators. BioMetals, 2019, 32, 501-519.	4.1	14
9	Non-specific interference of cobalt with siderophore-dependent iron uptake pathways. Metallomics, 2019, 11, 1937-1951.	2.4	7
10	Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies. Coordination Chemistry Reviews, 2018, 364, 118-136.	18.8	52
11	Structural and functional studies of the metalloregulator Fur identify a promoter-binding mechanism and itsÂrole in Francisella tularensis virulence. Communications Biology, 2018, 1, 93.	4.4	19
12	Insights into polythiol-assisted AgNP dissolution induced by bio-relevant molecules. Environmental Science: Nano, 2018, 5, 1911-1920.	4.3	18
13	Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(<scp>i</scp>), corona formation and enzymatic activity. Nanoscale, 2017, 9, 6581-6594.	5.6	38
14	Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1566-1577.	2.4	26
15	Textural, Structural and Biological Evaluation of Hydroxyapatite Doped with Zinc at Low Concentrations. Materials, 2017, 10, 229.	2.9	64
16	Structural and Biological Assessment of Zinc Doped Hydroxyapatite Nanoparticles. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	59
17	Visualization, quantification and coordination of Ag ⁺ ions released from silver nanoparticles in hepatocytes. Nanoscale, 2016, 8, 17012-17021.	5.6	68
18	From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. ACS Chemical Biology, 2016, 11, 2519-2528.	3.4	13

ISABELLE MICHAUD-SORET

#	Article	IF	CITATIONS
19	Metal homeostasis disruption and mitochondrial dysfunction in hepatocytes exposed to sub-toxic doses of zinc oxide nanoparticles. Nanoscale, 2016, 8, 18495-18506.	5.6	48
20	Quaternary Structure of Fur Proteins, a New Subfamily of Tetrameric Proteins. Biochemistry, 2016, 55, 1503-1515.	2.5	22
21	XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorganic Chemistry, 2015, 54, 11688-11696.	4.0	31
22	Inhibition of the Ferric Uptake Regulator by Peptides Derived from Anti-FUR Peptide Aptamers: Coupled Theoretical and Experimental Approaches. ACS Chemical Biology, 2014, 9, 2779-2786.	3.4	11
23	Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale, 2014, 6, 1707-1715.	5.6	63
24	Interference between nanoparticles and metal homeostasis. Journal of Physics: Conference Series, 2011, 304, 012035.	0.4	0
25	The structure of the <i>Helicobacter pylori</i> ferric uptake regulator Fur reveals three functional metal binding sites. Molecular Microbiology, 2011, 79, 1260-1275.	2.5	109
26	Hierarchical regulation of the NikR-mediated nickel response in Helicobacter pylori. Nucleic Acids Research, 2011, 39, 7564-7575.	14.5	55
27	Structural and mechanistic insights into Helicobacter pylori NikR activation. Nucleic Acids Research, 2010, 38, 3106-3118.	14.5	38
28	Ferric uptake regulator protein: Binding free energy calculations and perâ€residue free energy decomposition. Proteins: Structure, Function and Bioinformatics, 2009, 75, 373-386.	2.6	35
29	A ZnS ₄ Structural Zinc Site in the <i>Helicobacter pylori</i> Ferric Uptake Regulator. Biochemistry, 2009, 48, 5582-5591.	2.5	35
30	Sub-micromolar affinity of Escherichia coli NikR for Ni(ii). Chemical Communications, 2008, , 1813.	4.1	17
31	A Comparative Analysis of Perturbations Caused by a Gene Knock-out, a Dominant Negative Allele, and a Set of Peptide Aptamers. Molecular and Cellular Proteomics, 2007, 6, 2110-2121.	3.8	19
32	Reversible Redox- and Zinc-Dependent Dimerization of theEscherichia coliFur Protein. Biochemistry, 2007, 46, 1329-1342.	2.5	40
33	pH dependent Ni(II) binding andÂaggregation ofÂEscherichiaÂcoli andÂHelicobacterÂpylori NikR. Biochimie, 2006, 88, 1693-1705.	2.6	18
34	Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. Journal of Biological Chemistry, 2006, 281, 21286-21295.	3.4	96
35	Structure of catechol 1,2-dioxygenase from Pseudomonas arvilla. Biochemical and Biophysical Research Communications, 2005, 338, 198-205.	2.1	40
36	Characterization of the DNA-binding site in the ferric uptake regulator protein fromEscherichia coliby UV crosslinking and mass spectrometry. FEBS Letters, 2005, 579, 5454-5460.	2.8	32

#	Article	IF	CITATIONS
37	Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Molecular Microbiology, 2004, 52, 1475-1485.	2.5	32
38	Spectroscopic Description of the Two Nitrosylâ^'Iron Complexes Responsible for Fur Inhibition by Nitric Oxide. Journal of the American Chemical Society, 2004, 126, 6005-6016.	13.7	88
39	Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16619-16624.	7.1	162
40	Coupling of Iron Assimilation and Pectinolysis in Erwinia chrysanthemi 3937. Molecular Plant-Microbe Interactions, 2002, 15, 1181-1191.	2.6	55
41	Magnetization studies of the active and fluoride-inhibited derivatives of the reduced catalase of Lactobacillus plantarum: toward a general picture of the anion-inhibited and active forms of the reduced dimanganese catalases. Journal of Biological Inorganic Chemistry, 2002, 7, 445-450.	2.6	17
42	Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor11Edited by G. v. Heijne. Journal of Molecular Biology, 2001, 310, 83-91.	4.2	54
43	First Spectroscopic Characterization of Fell-Fur, the Physiological Active Form of the Fur Protein. Journal of the American Chemical Society, 2000, 122, 394-395.	13.7	25
44	Identification of the Two Zinc-Bound Cysteines in the Ferric Uptake Regulation Protein from <i>Escherichia coli</i> :  Chemical Modification and Mass Spectrometry Analysis. Biochemistry, 1999, 38, 8582-8589.	2.5	68
45	Spectroscopic and Saturation Magnetization Properties of the Manganese- and Cobalt-Substituted Fur (Ferric Uptake Regulation) Protein fromEscherichia coliâ€. Biochemistry, 1999, 38, 6248-6260.	2.5	76
46	Feâ^'Catecholate and Feâ^'Oxalate Vibrations and Isotopic Substitution Shifts from DFT Quantum Chemistry. Journal of Physical Chemistry A, 1999, 103, 256-264.	2.5	41
47	The Existence of Two Oxidized Mn(III)Mn(III) Forms ofThermusthermophilusManganese Catalase. Inorganic Chemistry, 1998, 37, 3874-3876.	4.0	49
48	X-ray Absorption Spectroscopy of a New Zinc Site in the Fur Protein from <i>Escherichia coli</i> . Biochemistry, 1998, 37, 2564-2571.	2.5	130
49	Electrospray ionization mass spectrometry analysis of the apo- and metal-substituted forms of the Fur protein. FEBS Letters, 1997, 413, 473-476.	2.8	35
50	Magnetization Studies of the Reduced Active Form of the Catalase fromThermus thermophilus. Angewandte Chemie International Edition in English, 1997, 36, 1626-1628.	4.4	10
51	Quantum Chemical Approach to the Assignment of Ironâ^'Catecholate Vibrations and Isotopic Substitution Shifts. Journal of the American Chemical Society, 1996, 118, 3283-3284.	13.7	20
52	Resonance Raman Studies of Catecholate and Phenolate Complexes of Recombinant Human Tyrosine Hydroxylase. Biochemistry, 1995, 34, 5504-5510.	2.5	99
53	Crystallization of Catechol-1,2 Dioxygenase from Pseudomonas arvilla C-1. Journal of Molecular Biology, 1994, 236, 377-378.	4.2	11
54	cis-Dichloro(di-n-butyl sulfide)(tri-n-butylphosphine)platinum(II). Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 589-591.	0.4	3

#	ARTICLE	IF	CITATIONS
55	Investigation of sulfur containing amino acids at the lipoxygenase active site using a platinum complex. Biochemical and Biophysical Research Communications, 1992, 182, 779-785.	2.1	6
56	Soybean lipoxygenases-1, -2a, -2b and -2c do not contain PQQ. Biochemical and Biophysical Research Communications, 1990, 172, 1122-1128.	2.1	10