Akshay Talukdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seed longevity studies in wild type, cultivated and inter-specific recombinant inbred lines (RILs) of soybean [Glycine max (L.) Merr.]. Genetic Resources and Crop Evolution, 2022, 69, 399-409.	1.6	4
2	Population structure, gene flow and genetic diversity analyses based on agro-morphological traits and microsatellite markers within cultivated and wild germplasms of okra [Abelmoschus esculentus (L.) Moench.]. Genetic Resources and Crop Evolution, 2022, 69, 771-791.	1.6	5
3	Association mapping, trait variation, interaction and population structure analysis in cucumber (Cucumis sativus L.). Genetic Resources and Crop Evolution, 2022, 69, 1901-1917.	1.6	3
4	Development of MAGIC population in pigeon pea: a powerful genetic resource for mapping, genetic analysis and identification of potential breeding lines. Current Science, 2022, 122, 735.	0.8	0
5	Improvement in molecular detection of phytoplasma associated with rose by selection of suitable primers and development of a multiplex PCR assay. 3 Biotech, 2021, 11, 190.	2.2	1
6	Response of soybean genotypes to iron limiting stress in calcareous vertisol under ambient and elevated CO2 and temperature conditions. Journal of Environmental Biology, 2021, 42, 295-301.	0.5	1
7	Multilocus gene typing, mixed infection of phytoplasma strains associated with rose genotypes and confirmation of their natural reservoir sources. Tropical Plant Pathology, 2021, 46, 596-607.	1.5	4
8	Studies on expression of CBF1 and CBF2 genes and anti-oxidant enzyme activities in papaya genotypes exposed to low temperature stress. Scientia Horticulturae, 2020, 261, 108914.	3.6	13
9	Evidences for the use of 14C content in the root exudates as a novel application of radiocarbon labelling for screening iron deficiency tolerance of soybean (Glycine max (L.) Merr.) genotypes. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 487-496.	1.5	0
10	Developments and Prospects in Imperative Underexploited Vegetable Legumes Breeding: A Review. International Journal of Molecular Sciences, 2020, 21, 9615.	4.1	12
11	Genetics and mapping of seed coat impermeability in soybean using inter-specific populations. Physiology and Molecular Biology of Plants, 2020, 26, 2291-2299.	3.1	4
12	Inheritance and mapping of drought tolerance in soybean at seedling stage using bulked segregant analysis. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 63-70.	0.8	7
13	14C labelling as a reliable technique to screen soybean genotypes (Glycine max (L.) Merr.) for iron deficiency tolerance. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 655-662.	1.5	4
14	Low temperature stress induced physiological and biochemical alterations in papaya genotypes. South African Journal of Botany, 2019, 123, 133-141.	2.5	11
15	Mobilization of Iron from Calcareous Vertisol to Minimize Iron Deficiency Chlorosis of Soybean [Glycine max (L.) Merr.]. Journal of the Indian Society of Soil Science, 2019, 67, 351.	0.2	1
16	Genome-wide identification and characterization of InDels and SNPs in Glycine max and Glycine soja for contrasting seed permeability traits. BMC Plant Biology, 2018, 18, 141.	3.6	25
17	Seed Coat Permeability Studies in Wild and Cultivated Species of Soybean. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2358-2363.	0.1	11
18	Physiological and biochemical alterations due to low temperature stress in papaya genotypes. Indian Journal of Horticulture, 2017, 74, 491.	0.1	5

Akshay Talukdar

#	Article	IF	CITATIONS
19	Screening and identification of resistant sources against <i>Cowpea mild mottle virus</i> (CPMMV) disease in soybean. Indian Journal of Genetics and Plant Breeding, 2017, 77, 287.	0.5	1
20	Screening of soybean [<i>Glycine max</i> (L.) Merrill] genotypes for somatic embryogenesis and plant regeneration potential. Indian Journal of Genetics and Plant Breeding, 2017, 77, 387.	0.5	0
21	Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. Physiology and Molecular Biology of Plants, 2016, 22, 107-114.	3.1	52
22	Introgression of null allele of Kunitz trypsin inhibitor through marker-assisted backcross breeding in soybean (Glycine max L. Merr.). BMC Genetics, 2016, 17, 106.	2.7	25
23	Anther culture of <i>Glycine max</i> (Merr.): Effect of media on callus induction and organogenesis. Indian Journal of Genetics and Plant Breeding, 2016, 76, 319.	0.5	4
24	High frequency regeneration in soybean [Glycine max (L.) Merrill.] through direct somatic embryogenesis from immature cotyledons. Indian Journal of Plant Physiology, 2015, 20, 232-239.	0.8	2
25	Mapping of yellow mosaic virus (YMV) resistance in soybean (Glycine max L. Merr.) through association mapping approach. Genetica, 2015, 143, 1-10.	1.1	17
26	Biochemical screening for trypsin inhibitor factors and morphomolecular characterization of soybean (Glycine maxL. Merr.). Indian Journal of Genetics and Plant Breeding, 2015, 75, 490.	0.5	0
27	Population structure and association mapping studies for important agronomic traits in soybean. Journal of Genetics, 2014, 93, 775-784.	0.7	20
28	Population structure and association mapping studies for important agronomic traits in soybean. Journal of Genetics, 2014, 93, 775-84.	0.7	9
29	In vitro screening for NaCl tolerance of some soybean genotypes. Indian Journal of Plant Physiology, 2013, 18, 367-371.	0.8	3
30	Molecular characterization and identification of candidate markers for seed longevity in soybean [<i>Glycine max</i> (L.) Merill]. Indian Journal of Genetics and Plant Breeding, 2013, 73, 64.	0.5	10
31	Construction and characterization of 3-S Lines, an alternative population for mapping studies in rice (Oryza sativa L.). Euphytica, 2007, 156, 237-246.	1.2	6