
Igor A Konyakhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671348/publications.pdf Version: 2024-02-01

AKONYAKI

#	Article	IF	CITATIONS
1	Optoelectronic SEMS for Preventing Object Destruction. Studies in Systems, Decision and Control, 2020, , 199-204.	1.0	1
2	The optical-electronic autoreflection sensor for angular deformations measurement. , 2019, , .		0
3	Choosing parameters of active reference mark optical-electronic systems spatial position control. , 2019, , .		1
4	Vision-based system for long-term remote monitoring of large civil engineering structures: design, testing, evaluation. Measurement Science and Technology, 2018, 29, 115003.	2.6	9
5	Autocollimating system for precise measuring of three angular coordinates. , 2018, , .		1
6	The optical-electronic autoreflection sensor for measurement an angle of rotation. , 2018, , .		0
7	Problem analysis of image processing in two-axis autocollimator. Journal of Physics: Conference Series, 2016, 735, 012039.	0.4	Ο
8	Configurations of the reflector for optical-electronic autocollimator. , 2016, , .		4
9	Optical-electronic system for real-time structural health monitoring of roofs. , 2016, , .		4
10	Autocollimation sensor for measuring the deformations of objects and modules containing environmentally hazardous substances. , 2016, , .		2
11	Optical-electronic system controlling the position of a railway track with the help of reference marks. , 2016, , .		2
12	Design the algorithm compensation of vignetting error at optical-electronic autoreflection system by modelling vignetted image. , 2016, , .		2
13	System of the optic-electronic sensors for control position of the radio telescope elements. Proceedings of SPIE, 2016, , .	0.8	2
14	Monitoring deformations of industrial objects using optical-electronic autoreflection system. , 2015, , .		4
15	Multipurpose optic-electronic autocollimators for measuring deformations of the axle with a millimeter wave range radiotelescope. , 2015, , .		3
16	Optic-electronic systems for measurement a position of radio-telescope components. Proceedings of SPIE, 2015, , .	0.8	2
17	Method of increasing the working distance of optical-electronic autocollimator. , 2015, , .		3
18	Electrooptic converter to control linear displacements of the large structures of the buildings and		5

facilities., 2015,,.

IGOR A KONYAKHIN

0.8

9

#	Article	IF	CITATIONS
19	Investigation of a mathematical model of the system of electro-optical sensors for monitoring nonlinear surfaces. , 2015, , .		1
20	Optical-electronic system for real-time position control of roof's supporting structure. , 2015, , .		2
21	Research of the use of autoreflection scheme to measure the error of the optical elements in space telescope's relative position. Proceedings of SPIE, 2015, , .	0.8	1
22	Remote optoelectronic sensors for monitoring of nonlinear surfaces. Proceedings of SPIE, 2015, , .	0.8	1
23	Investigation vignetting beams in optoelectronic autocollimation angle measurement system. Proceedings of SPIE, 2015, , .	0.8	0
24	Autocollimating systems for roll angle measurement of large-scale object deformation. Proceedings of SPIE, 2015, , .	0.8	2
25	Optic-electronic system for measuring the three-dimensional angular deformation of pipe sections at large constructions. , 2015, , .		6
26	Optic-electronic sensor for measuring the deformations of the axle at the radio-telescope. , 2014, , .		2
27	Design of autocollimation systems by modelling an illuminance distribution of a vignetted image. Proceedings of SPIE, 2014, , .	0.8	2
28	Optic-electronic system for deformation of radio-telescope counter-reflector computer modeling. , 2014, , .		0
29	Determination of parameters and research autoreflection scheme to measurement errors relative position of the optical elements of the Space Telescope. Proceedings of SPIE, 2014, , .	0.8	4
30	Trihedral Reflectors for Three-Axis Angular Autocollimation Measurements. , 2014, , .		0
31	INVESTIGATION OF OPTICAL-ELECTRONIC AUTOCOLLIMATOR WITH QUADRANGULAR PYRAMIDAL REFLECTOR FOR MEASURING THE ANGULAR POSITION OF THE OBJECT. , 2014, , .		0
32	Three-axis optic-electronic autocollimation system for the inspection of large-scale objects. , 2013, , .		7
33	Research of autocollimating angular deformation measurement system for large-size objects control. Proceedings of SPIE, 2013, , .	0.8	9
34	Three-coordinate digital autocollimator. Journal of Optical Technology (A Translation of Opticheskii) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf 5
35	Study of a multi-array optoelectronic system for monitoring the elements of the Suffa RT-70 radio telescope. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 769.	0.4	9

³⁶ Optic-electronic systems for measurement the three-dimension angular deformation of axles at the millimeter wave range radiotelescope. Proceedings of SPIE, 2013, , .

IGOR A KONYAKHIN

#	Article	IF	CITATIONS
37	Survey of illuminance distribution of vignetted image at autocollimation systems by computer simulation. Proceedings of SPIE, 2013, , .	0.8	7
38	Approximation of large radio telescope surface with measurement data of optic-electronic stereoscopic system. Proceedings of SPIE, 2013, , .	0.8	2
39	Optic-electronic autocollimation sensor for measurement of the three-axis angular deformation of industry objects. Proceedings of SPIE, 2012, , .	0.8	9
40	Optic-electronic systems for measuring the angle deformations and line shifts of the reflecting elements at the rotateable radio-telescope. Proceedings of SPIE, 2011, , .	0.8	12
41	The experimental research of the systems for measuring the angle rotations and line shifts of the large aperture radio-telescope components. , 2010, , .		5
42	Methods of data processing and estimation of measuring accuracy in stereoscopic system for the control of objects displacements. Proceedings of SPIE, 2010, , .	0.8	0
43	Optoelectronic system on the base of the anamorphic element for the measuring of the elevation angles. , 2010, , .		1
44	High precision multimatrix optic-electronic modules for distributed measuring systems. , 2010, , .		6
45	Study of the influence of the tetrahedral reflectors properties on autocollimating systems characteristics. , 2010, , .		5
46	Inner-Base Optoelectronic System for the Control of Linear Displacements. Key Engineering Materials, 2010, 437, 237-241.	0.4	4
47	High Precision Angular and Linear Measurements Using Universal Opto-Electronic Measuring Modules in Distributed Measuring Systems. Key Engineering Materials, 2010, 437, 160-164.	0.4	6
48	Iterative algorithm for determining the coordinates of the images of point radiators. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2009, 76, 36.	0.4	13
49	Universal opto-electronic measuring modules in distributed measuring systems. , 2008, , .		4
50	Study of the structural features of invariant optoelectronic systems with a unified matrix analysis field. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2007, 74, 810.	0.4	5
51	Optoelectronic System for Roll Angles Measuring of Maneuvering Objects Based on Anamorphosis Effect. Journal of Physics: Conference Series, 2006, 48, 988-991.	0.4	0
52	Precision System for Motion Path Parameters Measurement of Wheel and Rail Transport. Journal of Physics: Conference Series, 2006, 48, 998-1002.	0.4	3
53	Research into New Type of a Control Element with Disturbed Prototype Configuration for Autocolimation Measurements. Journal of Physics: Conference Series, 2006, 48, 1008-1010.	0.4	0
54	Research on the Methods to Compensate the Systematic Error at Optical Autoreflection Angular Measurements. Journal of Physics: Conference Series, 2006, 48, 932-936.	0.4	3

#	Article	IF	CITATIONS
55	Optical elements for autocollimation strain-monitoring systems. Journal of Optical Technology (A) Tj ETQq1 1 0.7	784314 0.4	rgBT ₁ /Overlock
56	Development of optoelectronic autocollimation devices for monitoring angular displacements. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2000, 67, 344.	0.4	5
57	Optic-Electronic Systems for Control the Angle and Line Positions of the Elements Unblocked Aperture Radio-Telescope. Key Engineering Materials, 0, 437, 203-207.	0.4	2