
Nicole R Demarquette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of an industrial graphene grade and surface finishing on water and oxygen permeability, electrical conductivity, and mechanical properties of high-density polyethylene (HDPE) multilayered cast films. Materials Today Communications, 2022, 31, 103470.	0.9	3
2	Scaled-Up Multi-Needle Electrospinning Process Using Parallel Plate Auxiliary Electrodes. Nanomaterials, 2022, 12, 1356.	1.9	11
3	Evaluation of different solvents and solubility parameters on the morphology and diameter of electrospun pullulan nanofibers for curcumin entrapment. Carbohydrate Polymers, 2021, 251, 117127.	5.1	22
4	Polyvinylidene fluoride nanofibers obtained by electrospinning and blowspinning: Electrospinning enhances the piezoelectric βâ€phase – myth or reality?. Journal of Applied Polymer Science, 2021, 138, 49959.	1.3	7
5	Interface adjustment between poly(ethylene terephthalate) and graphene oxide in order to enhance mechanical and thermal properties of nanocomposites. Polymer Engineering and Science, 2021, 61, 1997-2011.	1.5	3
6	A Review on Graphene's Light Stabilizing Effects for Reduced Photodegradation of Polymers. Crystals, 2021, 11, 3.	1.0	25
7	Dielectric properties of recycled city and industrial waste polyethylene. , 2021, , .		0
8	In situ compatibilization of a polyethylene, polypropylene, and polystyrene ternary blend through Friedel–Crafts alkylation. Journal of Applied Polymer Science, 2020, 137, 48295.	1.3	2
9	Design and characterization of PNVCLâ€based nanofibers and evaluation of their potential applications as scaffolds for surface drug delivery of hydrophobic drugs. Journal of Applied Polymer Science, 2020, 137, 48472.	1.3	5
10	Dielectric Relaxation Dynamics of Clay ontaining Lowâ€Density polyethylene Blends and Nanocomposites. Polymer Engineering and Science, 2020, 60, 968-978.	1.5	9
11	Graphene/Thermoplastic Based Composites. , 2020, , .		0
12	Surface modification to control the water wettability of electrospun mats. International Materials Reviews, 2019, 64, 249-287.	9.4	71
13	Correlation between morphology, rheological behavior, and electrical behavior of conductive cocontinuous LLDPE/EVA blends containing commercial graphene nanoplatelets. Journal of Rheology, 2019, 63, 961-976.	1.3	20
14	Charge transport and accumulation in clay-containing LDPE nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 292-299.	1.8	3
15	Effect of blending and nanoclay on dielectric properties of polypropylene. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 1487-1494.	1.8	5
16	Massâ€produced graphene—HDPE nanocomposites: Thermal, rheological, electrical, and mechanical properties. Polymer Engineering and Science, 2019, 59, 675-682.	1.5	48
17	Tuning the mechanical and dielectric properties of clayâ€containing thermoplastic elastomer nanocomposites. Polymer Engineering and Science, 2018, 58, E174.	1.5	6
18	Polyethylene/thermoplastic elastomer/Zinc Oxide nanocomposites for high voltage insulation applications: Dielectric, mechanical and rheological behavior. European Polymer Journal, 2018, 100, 258-269.	2.6	51

#	Article	IF	CITATIONS
19	Experimental study on moldability and segregation of Inconel 718 feedstocks used in low-pressure powder injection molding. Advanced Powder Technology, 2018, 29, 180-190.	2.0	19
20	Complex Morphology Formation in Electrospinning of Binary and Ternary Poly(lactic acid) Solutions. Macromolecules, 2018, 51, 4094-4107.	2.2	40
21	Morphology, mechanical properties and electromagnetic shielding effectiveness of poly(styreneâ€ <i>b</i> â€ethyleneâ€ <i>ran</i> â€butyleneâ€ <i>b</i> â€styrene)/carbon nanotube nanocomposite effects of maleic anhydride, carbon nanotube loading and processing method. Polymer International, 2018. 67. 1229-1240.	2S: 1.6	11
22	Electrical Breakdown Properties of Clay-Based LDPE Blends and Nanocomposites. Journal of Nanomaterials, 2018, 2018, 1-17.	1.5	15
23	The Role of Selectively Located Commercial Graphene Nanoplatelets in the Electrical Properties, Morphology, and Stability of EVA/LLDPE Blends. Macromolecular Materials and Engineering, 2018, 303, 1800187.	1.7	24
24	Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding. European Polymer Journal, 2017, 88, 328-339.	2.6	64
25	Interfacial molecular dynamics of styrenic block copolymer-based nanocomposites with controlled spatial distribution. Polymer, 2017, 113, 9-26.	1.8	19
26	Surface properties evolution in electrospun polymer blends by segregation of hydrophilic or amphiphilic molecules. European Polymer Journal, 2017, 89, 129-137.	2.6	18
27	Polyethylene/polyhedral oligomeric silsesquioxanes composites: Electrical insulation for high voltage power cables. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 798-807.	1.8	20
28	Influence of segregation on rheological properties of wax-based feedstocks. Powder Technology, 2017, 320, 273-284.	2.1	16
29	Thermoplastic elastomer nanocomposites with controlled nanoparticles dispersion for HV insulation systems: Correlation between rheological, thermal, electrical and dielectric properties. European Polymer Journal, 2017, 94, 68-86.	2.6	24
30	Morphological evolution of block copolymer nanocomposites submitted to extensional flows. Journal of Rheology, 2016, 60, 175-189.	1.3	10
31	Wetting of Hydrophilic Electrospun Mats Produced by Blending SEBS with PEO–PPO–PEO Copolymers of Different Molecular Weight. Langmuir, 2016, 32, 1846-1853.	1.6	21
32	Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) and carbon nanotubes. European Polymer Journal, 2016, 77, 43-53.	2.6	65
33	Styrenic block copolymer-based nanocomposites: Implications of nanostructuration and nanofiller tailored dispersion on the dielectric properties. Polymer, 2015, 64, 139-152.	1.8	25
34	Blending and Morphology Control To Turn Hydrophobic SEBS Electrospun Mats Superhydrophilic. Langmuir, 2015, 31, 5495-5503.	1.6	37
35	Clay ontaining block copolymer nanocomposites with aligned morphology prepared by extrusion. Polymer International, 2014, 63, 184-194.	1.6	12
36	Morphological evolution of oriented clay-containing block copolymer nanocomposites under elongational flow. European Polymer Journal, 2013, 49, 1391-1405.	2.6	19

#	Article	IF	CITATIONS
37	Effect of prior photodegradation on the biodegradation of polypropylene/poly(3-hydroxybutyrate) blends. Polymer Engineering and Science, 2013, 53, 2109-2122.	1.5	17
38	Estudo do efeito do tipo de polipropileno na fotodegradação da blenda polipropileno/poliestireno de alto impacto. Polimeros, 2012, 22, 61-68.	0.2	11
39	Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polymer International, 2012, 61, 434-441.	1.6	25
40	Compatibilization of polypropylene/ poly(3â€hydroxybutyrate) blends. Journal of Applied Polymer Science, 2012, 123, 3511-3519.	1.3	22
41	Fotodegradação de compósitos de poliestireno/argila montmorilonita: efeito do tipo de argila e presenÁ§a de sal. Polimeros, 2012, 22, 13-21.	0.2	8
42	Influence of the type of quaternary ammonium salt used in the organic treatment of montmorillonite on the properties of poly(styreneâ€ <i>co</i> â€butyl acrylate)/layered silicate nanocomposites prepared by <i>in situ</i> miniemulsion polymerization. Journal of Applied Polymer Science, 2011, 119, 3658-3669.	1.3	11
43	Influence of the rubbery phase on the crystallinity and thermomechanical properties of poly(3â€hydroxybutyrate)/elastomer blends. Polymer International, 2010, 59, 851-858.	1.6	16
44	Modification of a Brazilian smectite clay with different quaternary ammonium salts. Quimica Nova, 2010, 33, 309-315.	0.3	34
45	Influence of granulometry and organic treatment of a Brazilian montmorillonite on the properties of poly(styreneâ€ <i>co</i> â€ <i>n</i> â€butyl acrylate)/layered silicate nanocomposites prepared by miniemulsion polymerization. Journal of Applied Polymer Science, 2009, 112, 1949-1958.	1.3	18
46	Stress relaxation behavior of PMMA/PS polymer blends. Rheologica Acta, 2009, 48, 527-541.	1.1	25
47	Effect of UV radiation and proâ€oxidant on PP biodegradability. Polymer Engineering and Science, 2009, 49, 123-128.	1.5	16
48	Comparison of adsorbent films obtained by plasma polymerization of oxygenated organic compounds. Sensors and Actuators B: Chemical, 2008, 130, 110-119.	4.0	8
49	Cracking formation on the surface of extruded photodegraded polypropylene plates. Polymer Engineering and Science, 2008, 48, 365-372.	1.5	32
50	Photooxidative behavior of polystyrene–montmorillonite nanocomposites. Polymer Engineering and Science, 2008, 48, 1511-1517.	1.5	18
51	Effect of the processing conditions and the addition of <i>trans</i> â€polyoctenylene rubber on the properties of natural rubber/styrene–butadiene rubber blends. Journal of Applied Polymer Science, 2008, 109, 445-451.	1.3	8
52	Study of process parameters for starch, gluten, and glycerol mixtures. Polymers for Advanced Technologies, 2007, 18, 861-867.	1.6	10
53	Magnesium Implantation by Plasma Immersion in Polymers for Oxidation Protection in Low Earth Orbit Environment. Plasma Processes and Polymers, 2007, 4, S1081-S1085.	1.6	11
54	Rheological behavior of poly(methyl methacrylate)/polystyrene (PMMA/PS) blends with the addition of PMMA-ran-PS. Rheologica Acta, 2007, 46, 653-664.	1.1	41

#	Article	lF	CITATIONS
55	Study of Morphologies of PMMA/PP/PS Ternary Blends. Macromolecules, 2006, 39, 2663-2675.	2.2	118
56	Production and deposition of adsorbent films by plasma polymerization on low cost micromachined non-planar microchannels for preconcentration of organic compound in air. Sensors and Actuators B: Chemical, 2005, 108, 435-444.	4.0	16
57	Plasma polymerized TEOS films for nanochannels formation and sensor development. Sensors and Actuators B: Chemical, 2005, 108, 955-963.	4.0	21
58	Evaluation of imbedded fiber retraction phenomenological models for determining interfacial tension between molten polymers. Polymer, 2005, 46, 8169-8177.	1.8	19
59	Effect of composition on the linear viscoelastic behavior and morphology of PMMA/PS and PMMA/PP blends. Polymer, 2005, 46, 2610-2620.	1.8	49
60	Nonlinear viscoelasticity of PP/PS/SEBS blends. Rheologica Acta, 2005, 44, 295-312.	1.1	31
61	Use of thin films obtained by plasma polymerization for grain protection and germination enhancement. Quimica Nova, 2005, 28, 1006.	0.3	17
62	Interfacial tension between polystyrene and a liquid crystal polymer. Liquid Crystals, 2005, 32, 349-357.	0.9	0
63	Obtention of selective membranes for water and hydrophobic liquids by plasma enhanced chemical vapor deposition on porous substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 112, 165-170.	1.7	17
64	Treatment of polymers by plasma immersion ion implantation for space applications. Surface and Coatings Technology, 2004, 186, 234-238.	2.2	16
65	Use of HMDS/hexane double layers for obtaining low cost selective membrane. Cellulose, 2003, 10, 171-178.	2.4	15
66	New procedure to increase the accuracy of interfacial tension measurements obtained by breaking thread method. Polymer, 2003, 44, 3045-3052.	1.8	20
67	Use of plasma polymerized highly polar organic compound films for sensor development. Sensors and Actuators B: Chemical, 2003, 91, 370-377.	4.0	10
68	Comparison between five experimental methods to evaluate interfacial tension between molten polymers. Polymer Engineering and Science, 2003, 43, 670-683.	1.5	35
69	Influence of temperature on surface tension of three liquid crystal polymers and polyethylene terephtalate. Liquid Crystals, 2003, 30, 1413-1422.	0.9	2
70	Influência da temperatura, da massa molar e da distribuição de massa molar na tensão superficial de PS, PP e PE: experimento e teoria. Polimeros, 2003, 13, 45-53.	0.2	1
71	Comparação entre duas teorias para a determinação da tensão interfacial pelo método de fibra quebrante. Polimeros, 2003, 13, 72-78.	0.2	0
72	Polymer Production by Plasma Polymerization of Oxygenated Organic Compounds. Polimeros, 2002, 12, 280-284.	0.2	3

#	Article	IF	CITATIONS
73	Influence of drop volume on surface tension evaluated using the pendant drop method. Colloid and Polymer Science, 2002, 280, 857-864.	1.0	58
74	Oxygen plasma treatment of sisal fibers and polypropylene: Effects on mechanical properties of composites. Polymer Engineering and Science, 2002, 42, 790-797.	1.5	29
75	Influence of composition on the linear viscoelastic behavior and morphology of PP/HDPE blends. Polymer, 2002, 43, 1313-1321.	1.8	58
76	Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends. Polymer, 2002, 43, 3959-3967.	1.8	121
77	Paper surface modification by plasma deposition of double layers of organic silicon compounds. Journal of Materials Chemistry, 2001, 11, 1019-1025.	6.7	41
78	Comportamento Viscoelástico Linear e Morfologia de Blendas PP/HDPE. Polimeros, 2001, 11, 201-212.	0.2	0
79	Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer, 2001, 42, 2543-2554.	1.8	154
80	Use of the pendant drop method to measure interfacial tension between molten polymers. Materials Research, 1999, 2, 23-32.	0.6	143
81	Interfacial tension, morphology and linear viscoelasticity behavior of PP/PS blends. Polimeros, 1999, 9, 71-77.	0.2	5
82	Estudo das propriedades reológicas, morfológicas e mecânicas de blendas injetadas de polipropileno com poliamidas reforçadas com fibras de vidro. Polimeros, 1998, 8, 53-62.	0.2	0
83	Comparação entre o método da gota pendente e o método da gota girante para medida da tensão interfacial entre polÁmeros. Polimeros. 1997. 7. 63-70	0.2	7