Torsten Christ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671325/publications.pdf Version: 2024-02-01

TODSTEN CHDIST

#	Article	IF	CITATIONS
1	Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 2016, 7, 29-42.	4.8	292
2	Role ofIKurin Controlling Action Potential Shape and Contractility in the Human Atrium. Circulation, 2004, 110, 2299-2306.	1.6	269
3	Human Atrial Ion Channel and Transporter Subunit Gene-Expression Remodeling Associated With Valvular Heart Disease and Atrial Fibrillation. Circulation, 2005, 112, 471-481.	1.6	215
4	Adult zebrafish heart as a model for human heart? An electrophysiological study. Journal of Molecular and Cellular Cardiology, 2010, 48, 161-171.	1.9	192
5	Electrophysiological properties of human mesenchymal stem cells. Journal of Physiology, 2004, 554, 659-672.	2.9	183
6	Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovascular Research, 2014, 103, 156-167.	3.8	168
7	Adipocyte Fatty Acid–Binding Protein Suppresses Cardiomyocyte Contraction. Circulation Research, 2009, 105, 326-334.	4.5	167
8	Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Scientific Reports, 2017, 7, 5464.	3.3	140
9	Activation of Human ether-a-go-go-Related Gene Potassium Channels by the Diphenylurea 1,3-Bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Molecular Pharmacology, 2006, 69, 266-277.	2.3	135
10	Atrial-like Engineered Heart Tissue: An InÂVitro Model of the Human Atrium. Stem Cell Reports, 2018, 11, 1378-1390.	4.8	132
11	Autoantibodies Against the β1adrenoceptor from Patients with Dilated Cardiomyopathy Prolong Action Potential Duration and Enhance Contractility in Isolated Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 1515-1525.	1.9	114
12	Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovascular Research, 2007, 74, 426-437.	3.8	110
13	Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports, 2018, 10, 822-833.	4.8	92
14	The new antiarrhythmic drug vernakalant: ex vivo study of human atrial tissue from sinus rhythm and chronic atrial fibrillation. Cardiovascular Research, 2013, 98, 145-154.	3.8	90
15	Disease modeling of a mutation in αâ€actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Molecular Medicine, 2019, 11, e11115.	6.9	88
16	5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Research, 2006, 16, 949-960.	12.0	76
17	Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11193-11198.	7.1	75
18	Human Engineered Heart Tissue Patches Remuscularize the Injured Heart in a Dose-Dependent Manner. Circulation, 2021, 143, 1991-2006.	1.6	73

#	Article	IF	CITATIONS
19	Human Induced Pluripotent Stem Cell–Derived Engineered Heart Tissue as a Sensitive Test System for QT Prolongation and Arrhythmic Triggers. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006035.	4.8	70
20	Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug Testing. Cellular Physiology and Biochemistry, 2009, 24, 527-536.	1.6	68
21	Biophysical Characterization of the New Human Ether-A-Go-Go-Related Gene Channel Opener NS3623 [N-(4-Bromo-2-(1H-tetrazol-5-yl)-phenyl)-N′-(3′-trifluoromethylphenyl)urea]. Molecular Pharmacology, 2006, 70, 1319-1329.	2.3	67
22	Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Science Translational Medicine, 2019, 11, .	12.4	57
23	Human Electrophysiological and Pharmacological Properties of XEN-D0101. Journal of Cardiovascular Pharmacology, 2013, 61, 408-415.	1.9	52
24	Blinded Contractility Analysis in hiPSC-Cardiomyocytes in Engineered Heart Tissue Format: Comparison With Human Atrial Trabeculae. Toxicological Sciences, 2017, 158, 164-175.	3.1	52
25	<scp>PDE3</scp> , but not <scp>PDE4</scp> , reduces β ₁ ―and β ₂ ―adrenoceptorâ€mediated inotropic and lusitropic effects in failing ventricle from metoprololâ€treated patients. British Journal of Pharmacology, 2013, 169, 528-538.	5.4	50
26	Inhibition of IK,ACh current may contribute to clinical efficacy of class I and class III antiarrhythmic drugs in patients with atrial fibrillation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 381, 251-259.	3.0	49
27	Inotropy and Lâ€ŧype Ca ²⁺ current, activated by β ₁ ―and β ₂ â€adrenoceptors, are differently controlled by phosphodiesterases 3 and 4 in rat heart. British Journal of Pharmacology, 2009, 156, 62-83.	5.4	48
28	Ca2+-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions. Frontiers in Pharmacology, 2016, 7, 300.	3.5	47
29	A new toxin from the sea anemone Condylactis gigantea with effect on sodium channel inactivation. Toxicon, 2006, 48, 211-220.	1.6	43
30	Decreased ATP-sensitive K+ current density during chronic human atrial fibrillation. Journal of Molecular and Cellular Cardiology, 2003, 35, 1399-1405.	1.9	42
31	Pharmacodynamics of propiverine and three of its main metabolites on detrusor contraction. British Journal of Pharmacology, 2005, 145, 608-619.	5.4	42
32	Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects <i>in vivo</i> in a mouse model of hypertrophic cardiomyopathy. Cardiovascular Research, 2016, 109, 90-102.	3.8	38
33	Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovascular Research, 2020, 116, 1487-1499.	3.8	38
34	Refractoriness in human atria: Time and voltage dependence of sodium channel availability. Journal of Molecular and Cellular Cardiology, 2016, 101, 26-34.	1.9	35
35	Rat atrial engineered heart tissue: a new in vitro model to study atrial biology. Basic Research in Cardiology, 2018, 113, 41.	5.9	34
36	Effects of proarrhythmic drugs on relaxation time and beating pattern in rat engineered heart tissue. Basic Research in Cardiology, 2014, 109, 436.	5.9	30

#	Article	IF	CITATIONS
37	Carvedilol blocks β2- more than β1-adrenoceptors in human heart. Cardiovascular Research, 2006, 69, 128-139.	3.8	29
38	Human atrial β _{1L} â€adrenoceptor but not β ₃ â€adrenoceptor activation increases force and Ca ²⁺ current at physiological temperature. British Journal of Pharmacology, 2011, 162, 823-839.	5.4	27
39	German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clinical Research in Cardiology, 2019, 108, 577-599.	3.3	27
40	Risperidone-induced action potential prolongation is attenuated by increased repolarization reserve due to concomitant block of ICa,L. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 371, 393-400.	3.0	24
41	Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation. Cardiovascular Research, 2014, 101, 533-542.	3.8	24
42	Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation. Frontiers in Physiology, 2018, 9, 510.	2.8	22
43	Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation. Medical and Biological Engineering and Computing, 2015, 53, 263-273.	2.8	21
44	Interaction between autoantibodies against the β1-adrenoceptor and isoprenaline in enhancing L-type Ca2+ current in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 716-723.	1.9	19
45	Myocardial Accumulation of Bupivacaine and Ropivacaine Is Associated with Reversible Effects on Mitochondria and Reduced Myocardial Function. Anesthesia and Analgesia, 2013, 116, 83-92.	2.2	19
46	Sphingosine-1-phosphate induces contraction of valvular interstitial cells from porcine aortic valves. Cardiovascular Research, 2012, 93, 490-497.	3.8	18
47	In permanent atrial fibrillation, PDE3 reduces force responses to 5â€HT, but PDE3 and PDE4 do not cause the blunting of atrial arrhythmias. British Journal of Pharmacology, 2016, 173, 2478-2489.	5.4	18
48	Cafedrine/Theodrenaline (20:1) Is an Established Alternative for the Management of Arterial Hypotension in Germany—a Review Based on a Systematic Literature Search. Frontiers in Pharmacology, 2017, 8, 68.	3.5	17
49	Translational investigation of electrophysiology in hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2021, 157, 77-89.	1.9	16
50	Electrophysiological profile of propiverine – relationship to cardiac risk. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 431-440.	3.0	15
51	LQT1-phenotypes in hiPSC: Are we measuring the right thing?. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1968.	7.1	15
52	The Effects of Levosimendan on Myocardial Function in Ropivacaine Toxicity in Isolated Guinea Pig Heart Preparations. Anesthesia and Analgesia, 2007, 105, 641-647.	2.2	13
53	Novel anti-arrhythmic agents for the treatment of atrial fibrillation. Current Opinion in Pharmacology, 2007, 7, 214-218.	3.5	13
54	Chelerythrine treatment influences the balance of pro- and anti-apoptotic signaling pathways in the remote myocardium after infarction. Molecular and Cellular Biochemistry, 2008, 310, 119-128.	3.1	13

#	Article	IF	CITATIONS
55	Block of Na + /Ca 2+ exchanger by SEA0400 in human right atrial preparations from patients in sinus rhythm and in atrial fibrillation. European Journal of Pharmacology, 2016, 788, 286-293.	3.5	13
56	Ca2+ currents in cardiomyocytes: How to improve interpretation of patch clamp data?. Progress in Biophysics and Molecular Biology, 2020, 157, 33-39.	2.9	13
57	Inhibition of Adenosine Pathway Alters Atrial Electrophysiology and Prevents Atrial Fibrillation. Frontiers in Physiology, 2020, 11, 493.	2.8	12
58	Carvedilol induces greater control of β2- than β1-adrenoceptor-mediated inotropic and lusitropic effects by PDE3, while PDE4 has no effect in human failing myocardium. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 629-640.	3.0	11
59	Impact of phosphodiesterases PDE3 and PDE4 on 5-hydroxytryptamine receptor4-mediated increase of cAMP in human atrial fibrillation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 291-298.	3.0	11
60	Are atrial human pluripotent stem cell-derived cardiomyocytes ready to identify drugs that beat atrial fibrillation?. Nature Communications, 2021, 12, 1725.	12.8	11
61	Intermittent Optogenetic Tachypacing of Atrial Engineered Heart Tissue Induces Only Limited Electrical Remodelling. Journal of Cardiovascular Pharmacology, 2021, 77, 291-299.	1.9	11
62	Comprehensive analyses of the inotropic compound omecamtiv mecarbil in rat and human cardiac preparations. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H373-H385.	3.2	11
63	AkrinorTM, a Cafedrine/ Theodrenaline Mixture (20:1), Increases Force of Contraction of Human Atrial Myocardium But Does Not Constrict Internal Mammary Artery In Vitro. Frontiers in Pharmacology, 2017, 8, 272.	3.5	10
64	Regulation of I Ca,L and force by PDEs in humanâ€induced pluripotent stem cellâ€derived cardiomyocytes. British Journal of Pharmacology, 2020, 177, 3036-3045.	5.4	10
65	Case Report on: Very Early Afterdepolarizations in HiPSC-Cardiomyocytes—An Artifact by Big Conductance Calcium Activated Potassium Current (Ibk,Ca). Cells, 2020, 9, 253.	4.1	10
66	Muscarinic subtype-2 receptor autoantibodies: actors or bystanders in human atrial fibrillation?. European Heart Journal, 2004, 25, 1091-1092.	2.2	9
67	Effects of Immunoglobulin G from Patients with Dilated Cardiomyopathy on Rat Cardiomyocytes. Basic and Clinical Pharmacology and Toxicology, 2005, 96, 445-452.	2.5	9
68	Skeletal muscle stem cells propagated as myospheres display electrophysiological properties modulated by culture conditions. Journal of Molecular and Cellular Cardiology, 2011, 50, 357-366.	1.9	9
69	An aqueous extract of the marine sponge Ectyoplasia ferox stimulates L-type Ca2+-current by direct interaction with the Cav1.2 subunit. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 474-483.	3.0	8
70	Normalization of force to muscle crossâ€sectional area: A helpful attempt to reduce data scattering in contractility studies?. Acta Physiologica, 2018, 224, e13202.	3.8	7
71	Divergent off-target effects of RSK N-terminal and C-terminal kinase inhibitors in cardiac myocytes. Cellular Signalling, 2019, 63, 109362.	3.6	6
72	DPP10 is a new regulator of Nav1.5 channels in human heart. International Journal of Cardiology, 2019, 284, 68-73.	1.7	6

#	Article	IF	CITATIONS
73	New Strategies for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 926.	3.8	6
74	Prolonged action potentials in HCM-derived iPSC - biology or artefact?. Cardiovascular Research, 2015, 106, 6-6.	3.8	5
75	Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2019, 127, 31-43.	1.9	5
76	No impact of sex and age on betaâ€adrenoceptorâ€mediated inotropy in human right atrial trabeculae. Acta Physiologica, 2021, 231, e13564.	3.8	5
77	Do we need new antiarrhythmic compounds in the era of implantable cardiac devices and percutaneous ablation?. Cardiovascular Research, 2005, 68, 341-343.	3.8	4
78	Effects of three metabolites of propiverine on voltage-dependent L-type calcium currents in human atrial myocytes. European Journal of Pharmacology, 2008, 598, 94-97.	3.5	4
79	Atrial-selective Antiarrhythmic Activity by Vernakalant Fact or Fiction?. Journal of Cardiovascular Pharmacology, 2014, 63, 23-24.	1.9	4
80	β 1 Adrenoceptor antagonistic effects of the supposedly selective β 2 adrenoceptor antagonist ICI 118,551 on the positive inotropic effect of adrenaline in murine hearts. Pharmacology Research and Perspectives, 2015, 3, e00168.	2.4	4
81	Regulation of basal and norepinephrine-induced cAMP and ICa in hiPSC-cardiomyocytes: Effects of culture conditions and comparison to adult human atrial cardiomyocytes. Cellular Signalling, 2021, 82, 109970.	3.6	4
82	Muscarinic Receptor Activation Reduces Force and Arrhythmias in Human Atria Independent of IK,ACh. Journal of Cardiovascular Pharmacology, 2022, 79, 678-686.	1.9	4
83	Recording Atrial Monophasic Action Potentials Using Standard Pacemaker Leads:. An Alternative Way to Study Electrophysiological Properties of the Human Atrium In Vivo?. PACE - Pacing and Clinical Electrophysiology, 2004, 27, 1632-1637.	1.2	3
84	Rate-adaptive pacing using intracardiac impedance shows no evidence for positive feedback during dobutamine stress test. Europace, 2002, 4, 311-315.	1.7	2
85	Letter by Christ et al Regarding Article, "Angiotensin II Potentiates the Slow Component of Delayed Rectifier K + Current via the AT 1 Receptor in Guinea Pig Atrial Myocytes― Circulation, 2006, 114, e565; author reply e566.	1.6	2
86	Prostaglandin E2 does not attenuate adrenergic-induced cardiac contractile response. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 963-968.	3.0	2
87	<i>In Vitro</i> Negative Inotropic Effect of Low Concentrations of Bupivacaine Relates to Diminished Ca2+ Sensitivity but Not to Ca2+ Handling or β-Adrenoceptor Signaling. Anesthesiology, 2018, 128, 1175-1186.	2.5	2
88	Blunted beta-adrenoceptor-mediated inotropy in valvular cardiomyopathy: another piece of the puzzle in human aortic valve disease. European Journal of Cardio-thoracic Surgery, 2021, 60, 56-63.	1.4	2
89	An aqueous extract of a marine sponge stimulates L-type Ca2+-current and increases force of contraction. Journal of Molecular and Cellular Cardiology, 2002, 34, A70.	1.9	1
90	Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: The New Working Horse in Cardiovascular Pharmacology?. Journal of Cardiovascular Pharmacology, 2021, 77, 265-266.	1.9	1

0

#	Article	IF	CITATIONS
91	Cardiac Arrhythmias: Introduction, Electrophysiology of the Heart, Action Potential and Membrane Currents. , 2015, , 977-1002.		1

92 Treatment of Atrial Fibrillation and Atrial Flutter. , 2015, , 1059-1079.

7