
Defeng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6670955/publications.pdf Version: 2024-02-01

DEFENC WU

#	Article	IF	CITATIONS
1	Selective Localization of Multiwalled Carbon Nanotubes in Poly(Îμ-caprolactone)/Polylactide Blend. Biomacromolecules, 2009, 10, 417-424.	2.6	345
2	Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polymer Degradation and Stability, 2008, 93, 1577-1584.	2.7	221
3	Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 2011, 212, 613-626.	1.1	218
4	Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. European Polymer Journal, 2008, 44, 2171-2183.	2.6	194
5	Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1100-1113.	2.4	187
6	Crystallization Behavior of Polylactide/Graphene Composites. Industrial & Engineering Chemistry Research, 2013, 52, 6731-6739.	1.8	153
7	Rheological properties and crystallization behavior of multiâ€walled carbon nanotube/poly(lµâ€€aprolactone) composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3137-3147.	2.4	152
8	Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 479-489.	2.4	150
9	Interfacial Properties, Viscoelasticity, and Thermal Behaviors of Poly(butylene succinate)/Polylactide Blend. Industrial & Engineering Chemistry Research, 2012, 51, 2290-2298.	1.8	136
10	Rheology and thermal stability of polylactide/clay nanocomposites. Polymer Degradation and Stability, 2006, 91, 3149-3155.	2.7	125
11	Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon, 2015, 95, 380-387.	5.4	110
12	Rheology of multiâ€walled carbon nanotube/poly(butylene terephthalate) composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2239-2251.	2.4	108
13	Creep behavior of polyurethane nanocomposites with carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2013, 50, 65-72.	3.8	108
14	Crystallization and biodegradation of polylactide/carbon nanotube composites. Polymer Engineering and Science, 2010, 50, 1721-1733.	1.5	91
15	Viscoelastic interfacial properties of compatibilized poly(ε aprolactone)/polylactide blend. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 756-765.	2.4	89
16	Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites. European Polymer Journal, 2005, 41, 2199-2207.	2.6	79
17	Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: A phase interface-property relation study. Carbohydrate Polymers, 2016, 146, 58-66.	5.1	73
18	Rheology of the sesame oil-in-water emulsions stabilized by cellulose nanofibers. Food Hydrocolloids, 2019, 94, 114-127.	5.6	71

Defeng Wu

#	Article	IF	CITATIONS
19	Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydrate Polymers, 2017, 157, 1821-1829.	5.1	65
20	Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydrate Polymers, 2021, 255, 117483.	5.1	64
21	Fabrication of Polylactide/Poly(ε-caprolactone) Blend Fibers by Electrospinning: Morphology and Orientation. Industrial & Engineering Chemistry Research, 2012, 51, 3682-3691.	1.8	63
22	Effect of clay on immiscible morphology of poly(butylene terephthalate)/polyethylene blend nanocomposites. Journal of Applied Polymer Science, 2006, 102, 3628-3633.	1.3	61
23	Nonisothermal crystallization kinetics of poly(butylene terephthalate)/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2006, 99, 3257-3265.	1.3	59
24	Insights into the nucleation role of cellulose crystals during crystallization of poly(\hat{I}^2) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 5 5.1	542 Td (-hyd
25	Polylactide/basalt fiber composites with tailorable mechanical properties: Effect of surface treatment of fibers and annealing. Composite Structures, 2017, 176, 1020-1027.	3.1	59
26	Rheological properties of nanocrystalline cellulose suspensions. Carbohydrate Polymers, 2017, 157, 303-310.	5.1	58
27	Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 608-618.	2.4	55
28	Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. European Polymer Journal, 2011, 47, 284-293.	2.6	55
29	Crystallization and thermal behavior of multiwalled carbon nanotube/poly(butylenes terephthalate) composites. Polymer Engineering and Science, 2008, 48, 1057-1067.	1.5	53
30	Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer, 2015, 67, 216-226.	1.8	52
31	The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: Nucleation agent or not?. Composites Part A: Applied Science and Manufacturing, 2017, 92, 17-26.	3.8	51
32	Study on physical properties of multiwalled carbon nanotube/poly(phenylene sulfide) composites. Polymer Engineering and Science, 2009, 49, 1727-1735.	1.5	49
33	Effect of flocculated structure on rheology of poly(butylene terephthalate)/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2807-2818.	2.4	47
34	Linear viscoelastic properties and crystallization behavior of multiâ€walled carbon nanotube/polypropylene composites. Journal of Applied Polymer Science, 2008, 108, 1506-1513.	1.3	47
35	Thermoplastic polyester elastomer nanocomposites filled with graphene: Mechanical and viscoelastic properties. Composites Science and Technology, 2016, 132, 108-115.	3.8	47
36	Electrospinning of polylactide and its composites with carbon nanotubes. Polymer Composites, 2011, 32, 1280-1288.	2.3	46

#	Article	IF	CITATIONS
37	Green Poly(ε-caprolactone) Composites Reinforced with Electrospun Polylactide/Poly(ε-caprolactone) Blend Fiber Mats. ACS Sustainable Chemistry and Engineering, 2014, 2, 2102-2110.	3.2	46
38	Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose, 2018, 25, 3955-3971.	2.4	46
39	Viscoelasticity of olive oil/water Pickering emulsions stabilized with starch nanocrystals. Carbohydrate Polymers, 2020, 230, 115575.	5.1	46
40	Selective Localization Behavior of Carbon Nanotubes: Effect on Transesterification of Immiscible Polyester Blends. Macromolecular Chemistry and Physics, 2011, 212, 1700-1709.	1.1	45
41	Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose, 2017, 24, 2163-2175.	2.4	45
42	Rheology of Carbon Nanotubes–Filled Poly(vinylidene fluoride) Composites. Industrial & Engineering Chemistry Research, 2012, 51, 6705-6713.	1.8	44
43	Linear rheological behaviour and thermal stability of poly(butylene terephthalate)/epoxy/clay ternary nanocomposites. Polymer Degradation and Stability, 2005, 87, 511-519.	2.7	43
44	Effect of epoxy resin on rheology of polycarbonate/clay nanocomposites. European Polymer Journal, 2007, 43, 1635-1644.	2.6	43
45	Morphology evolution of nanocomposites based on poly(phenylene sulfide)/poly(butylene) Tj ETQq1 1 0.78431	.4 rgBT /O	verlggk 10 Tr 5
46	Crystallization of poly(Îμ-caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Advances, 2016, 6, 37721-37730.	1.7	40
47	Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites. Polymer, 2018, 140, 167-178.	1.8	39
48	The starch nanocrystal filled biodegradable poly(ε-caprolactone) composite membrane with highly improved properties. Carbohydrate Polymers, 2018, 182, 115-122.	5.1	38
49	Crystallization and creep of the graphite nanosheets based poly(butylene adipate-co-terephthalate) biocomposites. Thermochimica Acta, 2014, 587, 72-80.	1.2	35
50	Crystallization of Poly(ϵ-caprolactone) composites with graphite nanoplatelets: Relations between nucleation and platelet thickness. Thermochimica Acta, 2015, 612, 25-33.	1.2	35
51	Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals. Cellulose, 2018, 25, 1795-1807.	2.4	35
52	Crystallization Temperature as the Probe To Detect Polymer–Filler Compatibility in the Poly(ε-caprolactone) Composites with Acetylated Cellulose Nanocrystal. Journal of Physical Chemistry C, 2017, 121, 18615-18624.	1.5	33
53	Rheological Percolation Behavior and Isothermal Crystallization of Poly(butyene Succinte)/Carbon Nanotube Composites. Industrial & Engineering Chemistry Research, 2011, 50, 14186-14192.	1.8	31
54	Rheological properties of magnetorheological suspensions stabilized with nanocelluloses. Carbohydrate Polymers, 2020, 231, 115776.	5.1	31

#	Article	IF	CITATIONS
55	Effects of ethyl cellulose on the crystallization and mechanical properties of poly(β-hydroxybutyrate). International Journal of Biological Macromolecules, 2016, 88, 120-129.	3.6	30
56	Morphology and mechanical properties of poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends controlled with cellulosic particles. Carbohydrate Polymers, 2017, 174, 217-225.	5.1	30
57	Mechanical properties of thermoplastic polyester elastomer controlled by blending with poly(butylene terephthalate). Polymer Testing, 2016, 55, 152-159.	2.3	29
58	Effect of steady shear on the morphology of biodegradable poly(ϵâ€caprolactone)/polylactide blend. Polymer Engineering and Science, 2009, 49, 2293-2300.	1.5	28
59	Selective localization of cellulose nanocrystals in the biodegradable poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overloo 136-147.	ck 10 Tf 50 1.8) 587 Td (ald 27
60	Transcrystallization of polypropylene in the presence of polyester/cellulose nanocrystal composite fibers. Carbohydrate Polymers, 2017, 167, 105-114.	5.1	26
61	Effect of epoxy resin on the thermal behaviors and viscoelastic properties of poly(phenylene sulfide). Materials Chemistry and Physics, 2011, 128, 274-282.	2.0	25
62	Cellulose nanofibers reinforced biodegradable polyester blends: Ternary biocomposites with balanced mechanical properties. Carbohydrate Polymers, 2020, 233, 115845.	5.1	25
63	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	24
64	Recycling of spodumene slag: preparation of green polymer composites. RSC Advances, 2016, 6, 36942-36953.	1.7	24
65	Morphology, Crystalline Structure and Isothermal Crystallization Kinetics of Polybutylene Terephthalate/Montmorillonite Nanocomposites. Polymers and Polymer Composites, 2005, 13, 61-71.	1.0	23
66	Morphology, nonisothermal crystallization behavior, and kinetics of poly(phenylene) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 3(02 Td (sulfid
67	Nucleation of a Thermoplastic Polyester Elastomer Controlled by Silica Nanoparticles. Industrial & Engineering Chemistry Research, 2016, 55, 5279-5286.	1.8	22
68	Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures. Carbohydrate Polymers, 2020, 227, 115341.	5.1	22
69	Green poly(β-hydroxybutyrate)/starch nanocrystal composites: Tuning the nucleation and spherulite morphology through surface acetylation of starch nanocrystal. Carbohydrate Polymers, 2018, 195, 79-88.	5.1	21
70	Banded spherulites of electrospun poly(trimethylene terephthalate)/carbon nanotube composite mats. Polymer International, 2011, 60, 1497-1503.	1.6	20
71	Molecular dynamics and crystallization precursors in polylactide and poly(lactide)/CNT biocomposites in the insulating state. European Polymer Journal, 2013, 49, 4008-4019.	2.6	20
	Water-insuster Dicharing amulsions stabilized by the starch paper yetals with various surface		

72Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface
modifications. Journal of Colloid and Interface Science, 2022, 607, 1613-1624.5.020

#	Article	IF	CITATIONS
73	The co-continuous morphology of biocompatible ethylene-vinyl acetate copolymers/poly(ε-caprolactone) blend: effect of viscosity ratio and vinyl acetate content. Colloid and Polymer Science, 2011, 289, 1683-1694.	1.0	18
74	Crystallization of Green Poly(Îμ-caprolactone) Nanocomposites with Starch Nanocrystal: The Nucleation Role Switching of Starch Nanocrystal with Its Surface Acetylation. Industrial & Engineering Chemistry Research, 2018, 57, 6257-6264.	1.8	18
75	Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked Poly(-malic acid). Polymer, 2019, 180, 121733.	1.8	18
76	Hierarchical networks of anisotropic hydrogels based on cross-linked Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10	∏F 50 622 1 1.8	[d (alcohol)/F 18
77	Poly(phenylene sulfide) magnetic composites. I. Relations of percolation between rheology, electrical, and magnetic properties. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 233-243.	2.4	17
78	Regulating Asynchronous Deformations of Biopolyester Elastomers via Photoprogramming and Strain-Induced Crystallization. Macromolecules, 2021, 54, 5694-5704.	2.2	17
79	Poly(phenylene sulfide) magnetic composites. II. Crystallization, thermal, and viscoelastic properties. Polymer Engineering and Science, 2008, 48, 966-975.	1.5	16
80	Degradation induced by nanostructural evolution of polylactide/clay nanocomposites in the isothermal cold crystallization process. Polymer International, 2009, 58, 430-436.	1.6	16
81	Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites. Carbohydrate Polymers, 2020, 242, 116399.	5.1	16
82	Cellulosic nanofibers filled poly(\hat{l}^2 -hydroxybutyrate): Relations between viscoelasticity of composites and aspect ratios of nanofibers. Carbohydrate Polymers, 2021, 265, 118093.	5.1	16
83	Thermoplastic polyester elastomer composites containing two types of filler particles with different dimensions: Structure design and mechanical property control. Composite Structures, 2018, 197, 21-27.	3.1	15
84	Starch nanocrystals as the particle emulsifier to stabilize caprylic/capric triglycerides-in-water emulsions. Carbohydrate Polymers, 2020, 245, 116561.	5.1	15
85	Reaction kinetics study of asymmetric polymer–polymer interface. Polymer, 2005, 46, 8410-8415.	1.8	14
86	Poly(vinylidene fluoride) reinforced by carbon fibers: Structural parameters of fibers and fiber-polymer adhesion. Applied Surface Science, 2012, 258, 9570-9578.	3.1	14
87	Nucleation Role of Basalt Fibers during Crystallization of Poly(ε-caprolactone) Composites. Industrial	1.8	14

88	Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(Îμ-caprolactone) nanocomposites. International Journal of Biological Macromolecules, 2022, 205, 587-594.	3.6	14
89	Insight into different roles of chitin nanocrystals and cellulose nanocrystals towards stabilizing Pickering emulsions. Food Hydrocolloids, 2022, 131, 107808.	5.6	14
90	Study on the reaction kinetics between PBT and epoxy by a novel rheological method. European Polymer Journal, 2005, 41, 2171-2175.	2.6	13

#	Article	IF	CITATIONS
91	Robust Self-Healing Magnetically Induced Colloidal Photonic Crystal Hydrogels. ACS Applied Polymer Materials, 2020, 2, 448-454.	2.0	13
92	Selectively Sensing Capacities of Biocompatible Shape Memory Materials Based on Cross-Linked Poly(<scp>l</scp> -malic acid): Visual Discrimination of the Solvents with Similar Structures. ACS Applied Polymer Materials, 2020, 2, 1672-1681.	2.0	13
93	Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly(β-hydroxybutyrate). International Journal of Biological Macromolecules, 2021, 166, 967-976.	3.6	13
94	New Way To Tailor Thermal Stability and Mechanical Properties of Thermoplastic Polyester Elastomer: Relations between Interfacial Structure and Surface Treatment of Spodumene Slag. Industrial & Engineering Chemistry Research, 2017, 56, 6239-6246.	1.8	12
95	Programmable and sophisticated shape-memory behavior <i>via</i> tailoring spatial distribution of polymer crosslinks. Journal of Materials Chemistry A, 2020, 8, 17193-17201.	5.2	12
96	Rheology of isothermally crystallized poly(butylene terephthalate) nanocomposites with clay loadings under the percolation threshold. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 229-238.	2.4	11
97	Crystallization behavior of poly(trimethylene terephthalate)/mesoporous silica SBA-15 composites prepared by in situ polymerization. Thermochimica Acta, 2013, 565, 72-81.	1.2	11
98	Rheological and electrical properties of carbon blackâ€based poly(vinylidene fluoride) composites. Polymer Engineering and Science, 2013, 53, 2541-2548.	1.5	11
99	Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: Phase behavior and mechanical property control using its transesterification system as the compatibilizer. Materials Chemistry and Physics, 2014, 148, 554-561.	2.0	11
100	Mapping hierarchical networks of poly(vinyl alcohol)/cellulose nanofiber composite hydrogels via viscoelastic probes. Carbohydrate Polymers, 2022, 288, 119372.	5.1	11
101	Effect of blending sequence on the morphologies of poly(butylene terephthalate)/epoxy/clay nanocomposites by a rheological approach. Journal of Applied Polymer Science, 2006, 99, 340-346.	1.3	10
102	Tuning Degradation and Mechanical Properties of Poly(l-lactic acid) with Biomass-Derived Poly(l-malic) Tj ETQq0 (0 0 rgBT /0 2 . 4	Dverlock 10 ⁻
103	Photothermal Stimuli-Responsive Biocomposites Based on Cross-Linked Poly(<scp> </scp> -malic acid) Reinforced with Carbon Nanotubes. ACS Applied Polymer Materials, 2020, 2, 5889-5897.	2.0	10
104	Effect of coldâ€crystallization on the AC and DC conductive properties of polylactide biocomposites with carboxylic or neat large aspect ratio MWCNT. Polymer Composites, 2013, 34, 67-76.	2.3	9
105	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	9
106	Poly(phenylene sulfide)/lowâ€meltingâ€point metal composites. I. Transient viscoelastic properties and crystallization kinetics. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 677-690.	2.4	8
107	Viscoelastic properties of polyarylene ether nitriles/thermotropic liquid crystalline polymer blend. Journal of Applied Polymer Science, 2008, 108, 1934-1941.	1.3	8

Viscoelastic behavior and model simulations of poly(butylene adipate-<i>co</i>terephthalate) biocomposites with carbon nanotubes: Hierarchical structures and relaxation. Journal of Composite 1.2 8 Materials, 2016, 50, 1805-1816.

#	Article	IF	CITATIONS
109	Insight into melting point depression of polylactide nanocomposites with acetylated chitin nanocrystals. Carbohydrate Polymers, 2021, 273, 118594.	5.1	8

SELECTIVE LOCALIZATION OF CARBON NANOTUBES IN IMMISCIBLE BLENDS OF POLY(TRIMETHYLENE) Tj ETQq0 0 0 gerlock 10 110

111	Stereocomplex-Induced Self-Assembly of PLLA-PEG-PLLA and PDLA-PEG-PDLA Triblock Copolymers in an Aqueous System. ACS Applied Polymer Materials, 2021, 3, 6078-6089.	2.0	8
112	A rheological study on kinetics of poly(butylene terephthalate) melt intercalation. Journal of Applied Polymer Science, 2006, 99, 1865-1871.	1.3	7
113	Specific purification of a single protein from a cell broth mixture using molecularly imprinted membranes for the biopharmaceutical industry. RSC Advances, 2019, 9, 23425-23434.	1.7	6
114	Functional biopolyesters based on cross-linked Poly(-malic acid): Network engineering towards tailoring brittle-ductile transition and shape-memory performance. Polymer, 2021, 221, 123628.	1.8	6
115	Morphological control of porous ethylene-vinyl acetate copolymer membrane obtained from a co-continuous ethylene-vinyl acetate copolymer/poly(ϵ-caprolactone) blend. Polymer International, 2014, 63, 470-478.	1.6	5
116	Synthesis and Photoluminescence Mechanism of Multicolored Nitrogen-Doped Carbon Nanodots and Their Application in Polymer Self-Assemblies. ACS Applied Polymer Materials, 2022, 4, 4784-4795.	2.0	5
117	Effect of steady shear on the microstructural evolution of melt-intercalated polymer/clay nanocomposites. Journal of Applied Polymer Science, 2007, 105, 1740-1748.	1.3	4
118	Mechanical properties and creep behavior of poly(trimethylene terephthalate)/mesoporous silica composites. Polymer Composites, 2015, 36, 1386-1393.	2.3	4
119	Insight into the role of free volume in irradiation resistance to discoloration of lead ontaining plexiglass. Journal of Applied Polymer Science, 2022, 139, 51545.	1.3	4
120	Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass. Reaction Chemistry and Engineering, 2021, 6, 1628-1634.	1.9	4
121	MORPHOLOGY AND VISCOELASTIC BEHAVIOR OF POLYLACTIDE/ETHYLENE-VINYL ACETATE COPOLYMER BLENDS. Acta Polymerica Sinica, 2011, 011, 139-144.	0.0	4
122	Effect of Epoxy Resin on the Mechanical Properties and Melt Viscoelastic Behaviour of Poly(butylene) Tj ETQq0 0	0 rgBT /C	veglock 10
123	Comparison between isothermal cold and melt crystallization of polylactide/clay nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-68.	0.9	2
124	Nucleation Effect of Thermotropic Liquid Crystalline Polymer on the Crystallization of Poly(ε-Caprolactone). Polymers and Polymer Composites, 2010, 18, 91-101.	1.0	0

125	EFFECT OF COMPATIBILIZER ON STRUCTURAL RHEOLOGY OF PP/PET BLENDS. Acta Polymerica Sinica, 2009, 007, 609-614.	0.0	0
126	EFFECT OF CARBON NANOTUBES ON TRANSESTERIFICATION IN MISCIBLE POLYESTER BLENDS. Acta Polymerica Sinica, 2012, 011, 1425-1432.	0.0	0

8

#	Article	IF	CITATIONS
127	Nanopolysaccharides-Based Green Additives. Springer Series in Biomaterials Science and Engineering, 2019, , 367-388.	0.7	ο