
Masood A Shammas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669944/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A standalone approach to utilize telomere length measurement as a surveillance tool in oral leukoplakia. Molecular Oncology, 2022, 16, 1650-1660.	2.1	2
2	Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Communications Biology, 2021, 4, 617.	2.0	7
3	Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer Journal, 2021, 11, 166.	2.8	27
4	B Cell Transcriptional Coactivator <i>POU2AF1</i> (BOB-1) Is an Early Transcription Factor Modulating the Protein Synthesis and Ribosomal Biogenesis in Multiple Myeloma: With Therapeutic Implication. Blood, 2021, 138, 2670-2670.	0.6	2
5	Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia. Biology, 2021, 10, 1182.	1.3	5
6	IgM-MM is predominantly a pre–germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood, 2021, 138, 1980-1985.	0.6	11
7	Presence of Extrachromosomal DNA (ecDNA) Impacts Both Progression Free and Overall Survival and Is an Independent Poor Prognostic Marker in Multiple Myeloma. Blood, 2021, 138, 461-461.	0.6	0
8	Dysfunctional HDAC8 Impacts Genomic Integrity and Is a Novel Therapeutic Target in Multiple Myeloma. Blood, 2021, 138, 1610-1610.	0.6	0
9	ldentifying Long Noncoding RNA Dependencies Using CRISPR Interference (CRISPRi)-Based Platform in Multiple Myeloma. Blood, 2021, 138, 894-894.	0.6	0
10	Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. Journal of Clinical Oncology, 2020, 38, 3107-3118.	0.8	45
11	High-Dose Melphalan Significantly Increases Mutational Burden in Multiple Myeloma Cells at Relapse: Results from a Randomized Study in Multiple Myeloma. Blood, 2020, 136, 4-5.	0.6	11
12	RAD51 Inhibitor Reverses Etoposide-Induced Genomic Toxicity and Instability in Esophageal Adenocarcinoma Cells. , 2020, 2, 3-9.		4
13	ABL1 Kinase Plays an Important Role in Spontaneous and Melphalan-Induced Genomic Instability in Multiple Myeloma: Potential Therapeutic Application. Blood, 2020, 136, 51-51.	0.6	8
14	Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenström Macroglobulinemia. Clinical Cancer Research, 2019, 25, 369-377.	3.2	24
15	Deciphering the chronology of copy number alterations in Multiple Myeloma. Blood Cancer Journal, 2019, 9, 39.	2.8	38
16	Amplification and overexpression of E2 ubiquitin conjugase UBE2T promotes homologous recombination in multiple myeloma. Blood Advances, 2019, 3, 3968-3972.	2.5	11
17	HDAC8 Mediates Homologous Recombination and Cytoskeleton Integrity in Myeloma with Potential Impact on Cell Growth and Survival. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e127-e128.	0.2	0
18	Recurrent somatic Alterations in the Non-Coding Genome Alter Gene Expression Levels and Correlate With Clinical Outcome. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e12-e13.	0.2	0

#	Article	IF	CITATIONS
19	MUS81 Participates in the Progression of Serous Ovarian Cancer Associated With Dysfunctional DNA Repair System. Frontiers in Oncology, 2019, 9, 1189.	1.3	14
20	Ongoing Spontaneous DNA Damage Creates Synthetic Lethality Targeted By Novel RAD51 Inhibitors in Multiple Myeloma. Blood, 2019, 134, 4378-4378.	0.6	0
21	HDAC8 Maintain Cytoskeleton Integrity Via Homologous Recombination and Represent a Novel Therapeutic Target in Multiple Myeloma. Blood, 2019, 134, 4385-4385.	0.6	1
22	The Landscape of Genome Wide Somatic Alterations Identifies a Good-Risk Group in Newly Diagnosed Multiple Myeloma. Blood, 2019, 134, 3055-3055.	0.6	0
23	Integrated Genomics and Functional Validation Identifies a Global Kinase Gene Signature Impacting Genome Stability in Myeloma. Blood, 2019, 134, 363-363.	0.6	4
24	Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia, 2018, 32, 2626-2635.	3.3	48
25	Phosphatidylserine-exposing blood cells and microparticles induce procoagulant activity in non-valvular atrial fibrillation. International Journal of Cardiology, 2018, 258, 138-143.	0.8	33
26	Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer Journal, 2018, 8, 92.	2.8	37
27	Genomic patterns of progression in smoldering multiple myeloma. Nature Communications, 2018, 9, 3363.	5.8	163
28	Landscape of Recurrent Mutations in Non-Coding Genome with Functional Implications in Newly-Diagnosed Multiple Myeloma. Blood, 2018, 132, 190-190.	0.6	1
29	Critical Role for Apobec and Its Interacting Partners in Mediating Mutations and Cell Growth in Multiple Myeloma (MM). Blood, 2018, 132, 4462-4462.	0.6	0
30	Interleukin-6 Adversely Impacts Genomic Stability Via Targeting Multiple Pathways in Multiple Myeloma. Blood, 2018, 132, 4467-4467.	0.6	0
31	PDZ Binding Kinase (PBK) - a Novel Gene Driving Genomic Evolution in Multiple Myeloma. Blood, 2018, 132, 4474-4474.	0.6	1
32	Deciphering the Chronology of Copy Number Alterations in Multiple Myeloma (MM): What Comes First?. Blood, 2018, 132, 3171-3171.	0.6	0
33	Stabilization of ATRIP by SHFM1 Regulates Homologous Recombination and Genome Stability in Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, e50-e51.	0.2	0
34	Redefining Board Certified Toxicologist by Consumer Products Safety Commission May Increase Potential Risk of Exposure to Carcinogens among Consumers in United States of America. Frontiers in Public Health, 2017, 5, 29.	1.3	0
35	Risk Assessment to Evaluate if Crayons Complying with the Consumer Product Safety Improvement Act of 2008 for Lead, Also Comply with California Proposition 65. Frontiers in Public Health, 2017, 5, 130.	1.3	5
36	Art Materials Can Be Dangerous! How Can You Reduce Your Risk?. Frontiers for Young Minds, 2017, 5, .	0.8	0

#	Article	IF	CITATIONS
37	Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. Journal of Gastroenterology and Hepatology Research, 2017, 6, 2286-2295.	0.2	11
38	Inclusion of "Toxicological Review Expiry Dates―in Art Material Labels May Further Reduce the Risk of Chronic Toxicity, Including That of Cancer. Frontiers in Oncology, 2016, 6, 4.	1.3	2
39	Dysregulated Aid/Apobec Family Proteins Promote Genomic Instability in Multiple Myeloma. Blood, 2016, 128, 803-803.	0.6	1
40	ABL Tyrosine Kinase Plays an Important Role in Mechanisms Involved in Genomic Instability in Multiple Myeloma. Blood, 2016, 128, 2087-2087.	0.6	0
41	Flap Structure-Specific Endonuclease 1 (FEN1) May be a Key Mediator of Genome Instability in Myeloma: A Cellular Vulnerability with Potential Therapeutic Significance. Blood, 2016, 128, 4440-4440.	0.6	0
42	Suggested Safe Harbor Limit for Titanium Dioxide: An Exposure Level Which Protects Consumers from Cancer Incidence. Frontiers in Oncology, 2015, 5, 76.	1.3	1
43	High Frequency and Poor Prognosis of Late Childhood BCR-ABL-Positive and MLL-AF4-Positive ALL Define the Need for Advanced Molecular Diagnostics and Improved Therapeutic Strategies in Pediatric B-ALL in Pakistan. Molecular Diagnosis and Therapy, 2015, 19, 277-287.	1.6	4
44	XRCC5 Plays an Important Role in Homologous Recombination, Genome Stability and Survival of Myeloma Cells. Blood, 2015, 126, 1218-1218.	0.6	1
45	Nuclease Activity Is Associated with Genomic Instability As Well As Survival in Myeloma; Underlying Mechanisms and Significance. Blood, 2015, 126, 2420-2420.	0.6	2
46	Identification of a Novel Long Intergenic Noncoding RNA - Linc00936, with Significant Impact on Multiple Myeloma Cell Growth Via mTOR Pathway Inhibition. Blood, 2015, 126, 504-504.	0.6	4
47	Functional and Genomic Signatures of Homologous Recombination (HR) Predict for Clinical Outcome in Multiple Myeloma (MM). Blood, 2015, 126, 3626-3626.	0.6	Ο
48	Apurinic/Apyrimidinic Endonuclease 1 Induced Genomic Instability Causes T-Cell Acute Lymphoblastic Leukemia in Zebrafish. Blood, 2015, 126, 1431-1431.	0.6	0
49	Elevated APEX1 Disrupts G2/M Checkpoint, Contributing to Evolution and Survival of Myeloma Cells. Blood, 2015, 126, 2997-2997.	0.6	0
50	Critical Role of Split Hand/Foot Malformation Type 1 (SHFM1) in Homologous Recombination and Cell Survival in Multiple Myeloma (MM). Blood, 2015, 126, 3625-3625.	0.6	0
51	Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene, 2014, 33, 1495-1505.	2.6	48
52	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	5.8	741
53	Differential and limited expression of mutant alleles in multiple myeloma. Blood, 2014, 124, 3110-3117.	0.6	54
54	Elevated APE1 Mediates Dysregulation of Homologous Recombination in Myeloma: Mechanisms and Translational Significance. Blood, 2014, 124, 2074-2074.	0.6	2

#	Article	IF	CITATIONS
55	Ongoing Spontaneous DNA Damage and the Role of Aberrant Epigenome in Multiple Myeloma. Blood, 2014, 124, 3398-3398.	0.6	2
56	Targeting Aberrant Non-Homologous End Joining in Multiple Myeloma: Role of the Classical and Alternative Pathways in Genomic Instability. Blood, 2014, 124, 3417-3417.	0.6	2
57	HDAC8 Mediates Homologous Recombination and Cytoskeleton Integrity in Myeloma with Potential Impact on Cell Growth and Survival. Blood, 2014, 124, 416-416.	0.6	1
58	Dysregulation of SHFM1, a Novel Target for Prevention of Genomic Instability in Myeloma, Is Associated with Epigenetic Changes at Specific CpG Sites. Blood, 2014, 124, 862-862.	0.6	1
59	Telomerase-Mediated Repair of Induced DNA Breaks Leads to Increased Genomic Instability in Multiple Myeloma Cells: Possible Mechanism and Translational Significance. Blood, 2014, 124, 5170-5170.	0.6	Ο
60	Differential and Limited Expression of Mutant Alleles in Multiple Myeloma. Blood, 2014, 124, 2007-2007.	0.6	0
61	Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target. Translational Research, 2013, 162, 364-370.	2.2	16
62	Non Homologous End Joining, a Marker Of Genomic Instability Is Elevated In Multiple Myeloma: A New Prognostic Factor. Blood, 2013, 122, 124-124.	0.6	10
63	Spontaneous DNA Damage and Aberrant Epigenome In Multiple Myeloma Constitute The Path To Disease Genomic Instability. Blood, 2013, 122, 4884-4884.	0.6	0
64	Role Of Base Excision Repair Associated AP Nuclease Activity In The Induction Of Homologous Recombination Repair Pathway and Survival Of MM Cells Following DNA Damage. Blood, 2013, 122, 1248-1248.	0.6	0
65	Disease-Associated Changes In The Repair Efficiency Of Double Strand Breaks Affect Melphalan Sensitivity Of The Bone Marrow Plasma Cells and Correlate With The Clinical Outcome Of Anti-Myeloma Therapy. Blood, 2013, 122, 3723-3723.	0.6	4
66	Telomerase Contributes To Repair Of DNA Breaks In Myeloma Cells By Incorporating "TTAGGG― Sequences Within Genome: Biological and Translational Significance. Blood, 2013, 122, 1249-1249.	0.6	0
67	Inhibition Of H3K27-Methylome As a Novel Therapeutic Strategy In Multiple Myeloma. Blood, 2013, 122, 3162-3162.	0.6	0
68	Whole Exome Sequencing Of Multiple Myeloma Reveals An Heterogeneous Clonal Architecture and Genomic Evolution. Blood, 2013, 122, 399-399.	0.6	0
69	Elevated Nuclease Activity Correlates With Clinical Spectrum Of Plasma Cell Dyscrasias. Blood, 2013, 122, 4885-4885.	0.6	0
70	Synthetic miR-34a Mimics as a Novel Therapeutic Agent for Multiple Myeloma: <i>In Vitro</i> and <i>In Vivo</i> Evidence. Clinical Cancer Research, 2012, 18, 6260-6270.	3.2	213
71	Aberrant Non-Homologous End Joining in Multiple Myeloma: A Role in Genomic Instability and As Potential Prognostic Marker Blood, 2012, 120, 2932-2932.	0.6	3
72	Direct Evidence and Functional Significance of DNA Repair by Telomerase in Multiple Myeloma. Blood, 2012, 120, 4416-4416.	0.6	0

#	Article	IF	CITATIONS
73	Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics and Proteomics, 2012, 9, 55-66.	1.0	8
74	Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 28-34.	1.3	456
75	Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene, 2011, 30, 3585-3598.	2.6	45
76	Repetitive sequences, genomic instability, and Barrett's esophageal adenocarcinoma. Mobile Genetic Elements, 2011, 1, 208-212.	1.8	7
77	Purification of Diseased Cells from Barrett's Esophagus and Related Lesions by Laser Capture Microdissection. Methods in Molecular Biology, 2011, 755, 181-187.	0.4	2
78	A Novel Role of Telomerase in DNA Repair and Genome Maintenance in Myeloma Blood, 2011, 118, 628-628.	0.6	0
79	Elevated APEX1 Endonuclease Is Associated with Increased DNA Breaks and Instability in Myeloma. Blood, 2011, 118, 1805-1805.	0.6	0
80	Whole Genome Sequencing Defines the Clonal Architecture and Genomic Evolution in Myeloma: Tumor Heterogeneity with Continued Acquisition of New Mutational Change. Blood, 2011, 118, 297-297.	0.6	0
81	Anticancer Activity of a Broccoli Derivative, Sulforaphane, in Barrett Adenocarcinoma: Potential Use in Chemoprevention and as Adjuvant in Chemotherapy. Translational Oncology, 2010, 3, 389-399.	1.7	75
82	Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Molecular Cancer, 2010, 9, 47.	7.9	60
83	Inhibition of Homologous Recombination Pathway Promotes Telomere Shortening and Cell Survival without Affecting Telomerase Activity In Myeloma. Blood, 2010, 116, 786-786.	0.6	0
84	Elevated Homologous Recombination Induces Karyotypic Changes and Predicts Poor Clinical Outcome In Multiple Myeloma. Blood, 2010, 116, 1924-1924.	0.6	23
85	Biology and Therapeutic Targeting of Sp1 Transactivation In Myeloma. Blood, 2010, 116, 134-134.	0.6	0
86	Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Molecular Cancer, 2009, 8, 26.	7.9	75
87	Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood, 2009, 113, 2290-2297.	0.6	119
88	Gadolinium Containing Contrast Agent Promotes Multiple Myeloma Cell Growth: Implication for Clinical Use of MRI in Myeloma Blood, 2009, 114, 1809-1809.	0.6	0
89	Perturbation of Genomic Instability by Wortmannin in Myeloma Blood, 2009, 114, 1105-1105.	0.6	0
90	Evolution of Genomic Changes and Their Significance in Myeloma Blood, 2009, 114, 605-605.	0.6	0

#	Article	IF	CITATIONS
91	Whole Genome Paired End Sequencing Identifies Genomic Evolution in Myeloma Blood, 2009, 114, 2846-2846.	0.6	3
92	Significant Biological Role of Sp1 Transactivation in Myeloma: Potential Therapeutic Application Blood, 2009, 114, 1841-1841.	0.6	0
93	Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo. Leukemia, 2008, 22, 1410-1418.	3.3	95
94	Ritonavir mediated protection of retinoblastoma-E2F-1 complex at G1 phase of cell cycle in pancreatic cancer cell lines. Journal of the American College of Surgeons, 2008, 207, S97.	0.2	0
95	Ceneration of Antitumor Invariant Natural Killer T Cell Lines in Multiple Myeloma and Promotion of Their Functions via Lenalidomide: A Strategy for Immunotherapy. Clinical Cancer Research, 2008, 14, 6955-6962.	3.2	58
96	Telomere Maintenance in Laser Capture Microdissection–Purified Barrett's Adenocarcinoma Cells and Effect of Telomerase Inhibition <i>In vivo</i> . Clinical Cancer Research, 2008, 14, 4971-4980.	3.2	39
97	Oncoprotein 18 (Op18) : A Differentially Expressed Gene Is a Novel Therapeutic Target in Multiple Myeloma. Blood, 2008, 112, 2741-2741.	0.6	0
98	Phenotypic and Functional Effects of Heat Shock Protein 90 Inhibition on Dendritic Cell. Journal of Immunology, 2007, 178, 7730-7737.	0.4	42
99	Biological pathways and in vivo antitumor activity induced by Atiprimod in myeloma. Leukemia, 2007, 21, 2519-2526.	3.3	24
100	Hedgehog Pathway as a Potential Therapeutic Target in Multiple Myeloma Blood, 2007, 110, 672-672.	0.6	1
101	Dysfunctional T regulatory cells in multiple myeloma. Blood, 2006, 107, 301-304.	0.6	220
102	Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications. Blood, 2006, 108, 2804-2810.	0.6	156
103	Biological Pathways and In Vivo Anti-Tumor Activity Induced by Atiprimod in Multiple Myeloma (MM) Blood, 2006, 108, 3455-3455.	0.6	0
104	Genomic Evolution of Multiple Myeloma In Vivo over Time Blood, 2006, 108, 3400-3400.	0.6	0
105	Critical Role of Recombinase (HsRAD51) in Genetic Instability in Multiple Myeloma Blood, 2006, 108, 2078-2078.	0.6	1
106	Novel Murine Model To Study Modulation of Genes and Molecular Pathways Induced Following In Vivo Interaction between Multiple Myeloma Cells and Human BM Milieu Blood, 2006, 108, 3409-3409.	0.6	0
107	Defining a Murine Model To Study Bone Disease in Multiple Myeloma (MM) Blood, 2006, 108, 3518-3518.	0.6	0
108	Elevated Apurinic/Apyrimidinic Endonuclease Activity Significantly Contributes to DNA Instability in Multiple Myeloma Blood, 2006, 108, 2077-2077.	0.6	0

#	Article	IF	CITATIONS
109	Myeloma Microenvironment Controls T Regulatory Cell Activity: Potential Target for Therapeutic Interventions Blood, 2006, 108, 659-659.	0.6	0
110	Physical and Functional Association of the MRN Complex with Human Telomerase in Multiple Myeloma Blood, 2006, 108, 5076-5076.	0.6	0
111	Identification of Novel Antigens with Induced Immune Response in MGUS Blood, 2006, 108, 655-655.	0.6	0
112	In Vitro Generation of Highly Purified Functional Invariant NKT Cells in Multiple Myeloma: A Strategy for Immunotherapy Blood, 2006, 108, 5104-5104.	0.6	0
113	A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood, 2005, 106, 713-716.	0.6	115
114	Combination Therapy with Interleukin-6 Receptor Superantagonist Sant7 and Dexamethasone Induces Antitumor Effects in a Novel SCID-hu In vivo Model of Human Multiple Myeloma. Clinical Cancer Research, 2005, 11, 4251-4258.	3.2	93
115	Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells: mechanism and therapeutic potential. Molecular Cancer, 2005, 4, 24.	7.9	82
116	Proteasome Inhibitor Does Not Affect the Function of Human Immune Systems: Effects on Dendritic Cells, T Lymphocytes and NK Cells Blood, 2005, 106, 3930-3930.	0.6	0
117	Novel Model To Evaluate Changes in Gene Expression Profile of Myeloma Cells In Vivo Following Interaction with Human BM Microenvironment Blood, 2005, 106, 2490-2490.	0.6	1
118	GRN163L, a Novel and Potent Telomerase Inhibitor, Inhibits Myeloma Cell Growth In Vitro and In Vivo Blood, 2005, 106, 639-639.	0.6	0
119	In Vivo Anti-Tumor Activity of Atiprimod on SCID Models of Multiple Myeloma Blood, 2005, 106, 249-249.	0.6	Ο
120	A Green Tea Polyphenol, Epigallocatechin-3-Gallate, Induces Selective Apoptosis in Multiple Myeloma Cells: Mechanism of Action and Therapeutic Potential Blood, 2005, 106, 1590-1590.	0.6	36
121	In Vitro Generation of Highly-Purified Functional Invariant NKT Cells: A Strategy for Immunotherapy in Multiple Myeloma Blood, 2005, 106, 5183-5183.	0.6	0
122	Dysfunctional T Regulatory Cells in Myeloma: Molecular Mechanisms of Dysregulation Blood, 2005, 106, 3462-3462.	0.6	1
123	Molecular Basis of Genomic Instability and Progression in Multiple Myeloma: Potential Role of Apurinic (Apyrimidinic) Endonuclease Blood, 2005, 106, 1561-1561.	0.6	Ο
124	Identification of Target Antigens Recognized in MGUS for Immunotherapeutic Approaches Blood, 2005, 106, 3463-3463.	0.6	0
125	In Vitro and in Vivo Activity of the Maytansinoid Immunoconjugate huN901-N2′-Deacetyl-N2′-(3-Mercapto-1-Oxopropyl)-Maytansine against CD56+ Multiple Myeloma Cells. Cancer Research, 2004, 64, 4629-4636.	0.4	157
126	Telomerase Inhibition and Cell Growth Arrest After Telomestatin Treatment in Multiple Myeloma. Clinical Cancer Research, 2004, 10, 770-776.	3.2	110

#	Article	IF	CITATIONS
127	Growth arrest, apoptosis, and telomere shortening of Barrett's-associated adenocarcinoma cells by a telomerase inhibitor. Gastroenterology, 2004, 126, 1337-1346.	0.6	63
128	Targeting the single-strand G-rich overhang of telomeres with PNA inhibits cell growth and induces apoptosis of human immortal cells. Experimental Cell Research, 2004, 295, 204-214.	1.2	28
129	Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood, 2004, 103, 1799-1806.	0.6	127
130	Cytotoxic activity of the maytansinoid immunoconjugate B-B4–DM1 against CD138+ multiple myeloma cells. Blood, 2004, 104, 3688-3696.	0.6	122
131	Specific Killing of Multiple Myeloma Cancer Cells by Epigallocatechin-3-Gallate Extracted from Green Tea Blood, 2004, 104, 2461-2461.	0.6	3
132	Telomerase Inhibition, Telomere Shortening and Apoptotic Cell Death in Multiple Myeloma Cells Following Exposure to a Novel and Potent Telomerase Inhibitor (GRN163L), Targeting RNA component of Telomerase Blood, 2004, 104, 638-638.	0.6	1
133	The Polycomb Group Transcriptional Repressor Bmi-1 Is Constitutively Expressed in Multiple Myeloma (MM) Cells and Modulates Proliferation through a Mechanism Independent of the Ink4a/ARF Locus Blood, 2004, 104, 3346-3346.	0.6	0
134	Molecular Mechanisms Underlying the Development of Drug Resistance in Multiple Myeloma Blood, 2004, 104, 3409-3409.	0.6	1
135	Effect of Thalidomide and Revlimid on the Gene Expression That Reveals Molecular Circuitries Involved in T Cell Co-Activation Blood, 2004, 104, 2472-2472.	0.6	0
136	Dysregulated Apurinic/Apyrimidinic Endonucleases (Ape1 and Ape2) Lead to Genetic Instability in Multiple Myeloma Blood, 2004, 104, 1418-1418.	0.6	0
137	Dysregulated CD4+CD25+ T- Regulatory Cells and TLRs in Myeloma Blood, 2004, 104, 2466-2466.	0.6	1
138	Antisense p53 transduction leads to overexpression of bcl-2 and dexamethasone resistance in multiple myeloma. Leukemia Research, 2003, 27, 73-78.	0.4	16
139	Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood, 2003, 102, 4504-4511.	0.6	212
140	Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma. Molecular Cancer Therapeutics, 2003, 2, 825-33.	1.9	70
141	Effects of oligonucleotide N3'>P5' thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Research, 2003, 63, 6187-94.	0.4	66
142	Interaction of Adeno-Associated Virus Rep78 with SV40 T Antigen: Implications in Rep Protein Expression Leading to the Inhibition of SV40-Mediated Cell Proliferation. Intervirology, 2002, 45, 115-118.	1.2	3
143	Adeno-associated virus protects the retinoblastoma family of proteins from adenoviral-induced functional inactivation. Cancer Research, 2002, 62, 2982-5.	0.4	10
144	Expression of AAV Rep Proteins in SV40-Transformed and Untransformed Cells: Reciprocal Interaction with Host DNA Synthesis. Intervirology, 2001, 44, 298-305.	1.2	2

#	Article	IF	CITATIONS
145	DNA instability, telomere dynamics, and cell transformation. Advances in Cell Aging and Gerontology, 2001, 4, 135-151.	0.1	0
146	Dual Level Inhibition of E2F-1 Activity by Adeno-associated Virus Rep78. Journal of Biological Chemistry, 2001, 276, 24315-24322.	1.6	22
147	Telomerase inhibition by peptide nucleic acids reverses `immortality' of transformed human cells. Oncogene, 1999, 18, 6191-6200.	2.6	141
148	Recombination and its roles in DNA repair, cellular immortalization and cancer. Age, 1999, 22, 71-88.	3.0	7
149	Elevated Recombination in Immortal Human Cells Is Mediated by <i>HsRAD51</i> Recombinase. Molecular and Cellular Biology, 1997, 17, 7151-7158.	1.1	128
150	Expression of SV40 Large T Antigen Stimulates Reversion of a Chromosomal Gene Duplication in Human Cells. Experimental Cell Research, 1997, 234, 300-312.	1.2	21
151	Induction of Duplication Reversion in Human Fibroblasts, by Wild-Type and Mutated SV40 T Antigen, Covaries With the Ability to Induce Host DNA Synthesis. Genetics, 1997, 146, 1417-1428.	1.2	13
152	Reduced telomere length in ataxia-telangiectasia fibroblasts. Mutation Research DNA Repair, 1996, 364, 1-11.	3.8	52
153	Defining genes that govern longevity inCaenorhabditis elegans. , 1996, 18, 131-143.		30