
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combustion and Flame, 2006, 146, 302-311.	2.8	512
2	Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. International Journal of Hydrogen Energy, 2009, 34, 4876-4888.	3.8	450
3	An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combustion and Flame, 2018, 197, 423-438.	2.8	432
4	Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR. Fuel, 2012, 93, 611-617.	3.4	297
5	Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel, 2008, 87, 2691-2697.	3.4	293
6	Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. International Journal of Heat and Fluid Flow, 2010, 31, 659-666.	1.1	268
7	Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combustion and Flame, 2012, 159, 918-931.	2.8	264
8	Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends combining with EGR. International Journal of Hydrogen Energy, 2009, 34, 1035-1044.	3.8	245
9	Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Science of the Total Environment, 2009, 407, 835-846.	3.9	240
10	Effect of n-pentanol addition on the combustion, performance andÂemission characteristics of a direct-injection diesel engine. Energy, 2014, 70, 172-180.	4.5	229
11	Experimental investigation on performance and emissions of a spark-ignition engine fuelled with natural gas–hydrogen blends combined with EGR. International Journal of Hydrogen Energy, 2009, 34, 528-539.	3.8	224
12	Numerical study of the effect of hydrogen addition on methane–air mixtures combustion. International Journal of Hydrogen Energy, 2009, 34, 1084-1096.	3.8	224
13	Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures. Fuel, 2015, 158, 1-10.	3.4	217
14	Laminar burning velocities and flame instabilities of butanol isomers–air mixtures. Combustion and Flame, 2010, 157, 2318-2325.	2.8	208
15	Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 2011, 88, 1620-1628.	5.1	204
16	Combustion behaviors of a direct-injection engine operating on various fractions of natural gas–hydrogen blends. International Journal of Hydrogen Energy, 2007, 32, 3555-3564.	3.8	200
17	Combustion characteristics of a direct-injection engine fueled with natural gas–hydrogen blends under different ignition timings. Fuel, 2007, 86, 381-387.	3.4	195
18	Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen–air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2009, 34, 8741-8755.	3.8	171

#	Article	IF	CITATIONS
19	Cycle-by-cycle variations in a spark ignition engine fueled with natural gas–hydrogen blends combined with EGR. International Journal of Hydrogen Energy, 2009, 34, 8405-8414.	3.8	170
20	Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures. Combustion and Flame, 2013, 160, 31-39.	2.8	166
21	Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas–hydrogen blends. International Journal of Hydrogen Energy, 2008, 33, 4876-4883.	3.8	164
22	Dynamics of droplet impact on solid surface with different roughness. International Journal of Multiphase Flow, 2017, 96, 56-69.	1.6	164
23	Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy & Fuels, 2022, 36, 6626-6658.	2.5	164
24	Combustion behaviors of a compression-ignition engine fuelled with diesel/methanol blends under various fuel delivery advance angles. Bioresource Technology, 2004, 95, 331-341.	4.8	163
25	Combustion characteristics of a direct-injection natural gas engine under various fuel injection timings. Applied Thermal Engineering, 2006, 26, 806-813.	3.0	161
26	Diesel engine gaseous and particle emissions fueled with diesel–oxygenate blends. Fuel, 2012, 94, 317-323.	3.4	161
27	Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames. International Journal of Hydrogen Energy, 2008, 33, 4906-4914.	3.8	158
28	Effect of spark timing and load on a DISI engine fuelled with 2,5-dimethylfuran. Fuel, 2011, 90, 449-458.	3.4	158
29	Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-fuel Mixtures Highly Diluted with CO ₂ . Energy & Fuels, 2013, 27, 6231-6237.	2.5	153
30	Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Applied Thermal Engineering, 2007, 27, 374-380.	3.0	144
31	Progress in combustion investigations of hydrogen enriched hydrocarbons. Renewable and Sustainable Energy Reviews, 2014, 30, 195-216.	8.2	142
32	Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel, 2013, 104, 838-846.	3.4	136
33	Explosion characteristics of hydrogen–nitrogen–air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2009, 34, 554-561.	3.8	133
34	Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends. Applied Energy, 2011, 88, 2305-2314.	5.1	131
35	Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures. International Journal of Hydrogen Energy, 2010, 35, 7246-7252.	3.8	130
36	Understanding the antagonistic effect of methanol as a component in surrogate fuel models: A case study of methanol/n-heptane mixtures. Combustion and Flame, 2021, 226, 229-242.	2.8	129

#	Article	IF	CITATIONS
37	Measurements of laminar burning velocities and onset of cellular instabilities of methane–hydrogen–air flames at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2009, 34, 5574-5584.	3.8	127
38	Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with waste cooking oil biodiesel. Fuel, 2016, 180, 41-49.	3.4	124
39	Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon–air mixtures. Proceedings of the Combustion Institute, 2011, 33, 921-928.	2.4	123
40	Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures. Combustion and Flame, 2011, 158, 539-546.	2.8	122
41	Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure. Fuel, 2021, 287, 119563.	3.4	118
42	Numerical Study on the Effects of Diluents on the Laminar Burning Velocity of Methane–Air Mixtures. Energy & Fuels, 2012, 26, 4242-4252.	2.5	115
43	Effect of equivalence ratio on combustion and emissions of a dual-fuel natural gas engine ignited with diesel. Applied Thermal Engineering, 2019, 146, 738-751.	3.0	108
44	Spray properties of alternative fuels: A comparative analysis of ethanol–gasoline blends and gasoline. Fuel, 2007, 86, 1645-1650.	3.4	104
45	Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. International Journal of Hydrogen Energy, 2013, 38, 1636-1643.	3.8	104
46	Numerical study on laminar burning velocity and NO formation of premixed methane–hydrogen–air flames. International Journal of Hydrogen Energy, 2009, 34, 6545-6557.	3.8	103
47	Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology, 2022, 344, 126207.	4.8	103
48	Experimental Study on Engine Performance and Emissions for an Engine Fueled with Natural Gasâ^'Hydrogen Mixtures. Energy & Fuels, 2006, 20, 2131-2136.	2.5	102
49	A study of the combustion and emission characteristics of compressed-natural-gas direct-injection stratified combustion using a rapid-compression-machine. Combustion and Flame, 2002, 129, 1-10.	2.8	99
50	Comparative study on the effect of CO2 and H2O dilution on laminar burning characteristics of CO/H2/air mixtures. International Journal of Hydrogen Energy, 2014, 39, 3450-3458.	3.8	99
51	Identification of combustion intermediates in a low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization. Combustion and Flame, 2009, 156, 1365-1376.	2.8	98
52	High methane natural gas/air explosion characteristics in confined vessel. Journal of Hazardous Materials, 2014, 278, 520-528.	6.5	97
53	Engine performance and emissions of a compression ignition engine operating on the diesel-methanol blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218, 435-447.	1.1	96
54	Measurements of laminar burning velocities and Markstein lengths for methanol–air–nitrogen mixtures at elevated pressures and temperatures. Combustion and Flame, 2008, 155, 358-368.	2.8	94

#	Article	IF	CITATIONS
55	Experimental and numerical study on lean premixed methane–hydrogen–air flames at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2009, 34, 6951-6960.	3.8	93
56	Experimental and modeling study on auto-ignition characteristics of methane/hydrogen blends under engine relevant pressure. International Journal of Hydrogen Energy, 2012, 37, 19168-19176.	3.8	91
57	Laminar burning velocities and flame characteristics of CO–H2–CO2–O2 mixtures. International Journal of Hydrogen Energy, 2012, 37, 19158-19167.	3.8	90
58	Experimental investigation on the effect of n-butanol blending on spray characteristics of soybean biodiesel in a common-rail fuel injection system. Fuel, 2016, 182, 391-401.	3.4	89
59	Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine. Atmospheric Environment, 2009, 43, 2721-2730.	1.9	86
60	Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames. Combustion and Flame, 2012, 159, 2324-2335.	2.8	85
61	Experimental study on the performance of and emissions from a low-speed light-duty diesel engine fueled with <i>n-</i> butanol–diesel and isobutanol–diesel blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227, 261-271.	1.1	85
62	Pressure history in the explosion of moist syngas/air mixtures. Fuel, 2016, 185, 18-25.	3.4	85
63	Self-acceleration of cellular flames and laminar flame speed of syngas/air mixtures at elevated pressures. International Journal of Hydrogen Energy, 2016, 41, 18250-18258.	3.8	85
64	Flammability limits of hydrogen-enriched natural gas. International Journal of Hydrogen Energy, 2011, 36, 6937-6947.	3.8	84
65	Measurements of laminar burning velocities and Markstein lengths of propane–hydrogen–air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2008, 33, 7274-7285.	3.8	83
66	Measurement of laminar burning velocity of dimethyl ether–air premixed mixtures. Fuel, 2007, 86, 2360-2366.	3.4	82
67	Experimental and numerical investigation on diluted DME flames: Thermal and chemical kinetic effects on laminar flame speeds. Fuel, 2012, 102, 567-573.	3.4	82
68	High temperature ignition delay times of C5 primary alcohols. Combustion and Flame, 2013, 160, 520-529.	2.8	82
69	Review on the production methods and fundamental combustion characteristics of furan derivatives. Renewable and Sustainable Energy Reviews, 2016, 54, 1189-1211.	8.2	82
70	An experimental investigation on spray, ignition and combustion characteristics of biodiesels. Proceedings of the Combustion Institute, 2011, 33, 2071-2077.	2.4	80
71	Measurements of Laminar Burning Velocities and Markstein Lengths of <i>n</i> -Butanolâ~'Air Premixed Mixtures at Elevated Temperatures and Pressures. Energy & Fuels, 2009, 23, 4900-4907.	2.5	79
72	Effect of exhaust gas recirculation on the cycle-to-cycle variations in a natural gas spark ignition engine. Applied Thermal Engineering, 2011, 31, 2247-2253.	3.0	79

#	Article	IF	CITATIONS
73	Experimental investigation on effect of ethanol and di-ethyl ether addition on the spray characteristics of diesel/biodiesel blends under high injection pressure. Fuel, 2018, 218, 1-11.	3.4	77
74	Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor. Fuel, 2021, 291, 120135.	3.4	77
75	Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system. Energy, 2016, 112, 549-561.	4.5	76
76	Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine. Applied Energy, 2011, 88, 2324-2334.	5.1	75
77	The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor. International Journal of Hydrogen Energy, 2021, 46, 21013-21025.	3.8	75
78	Combustion characteristics and heat release analysis of a direct injection compression ignition engine fuelled with diesel—dimethyl carbonate blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 595-605.	1.1	74
79	Shock Tube Measurements and Kinetic Investigation on the Ignition Delay Times of Methane/Dimethyl Ether Mixtures. Energy & Fuels, 2012, 26, 6720-6728.	2.5	71
80	A comparative study of n -propanol, propanal, acetone, and propane combustion in laminar flames. Proceedings of the Combustion Institute, 2015, 35, 795-801.	2.4	71
81	Characterization of biogas-hydrogen premixed flames using Bunsen burner. International Journal of Hydrogen Energy, 2014, 39, 13292-13299.	3.8	70
82	Effect of di-n-butyl ether blending with soybean-biodiesel on spray and atomization characteristics in a common-rail fuel injection system. Fuel, 2015, 140, 116-125.	3.4	70
83	Effect of partially premixed and hydrogen addition on natural gas direct-injection lean combustion. International Journal of Hydrogen Energy, 2009, 34, 9239-9247.	3.8	69
84	Measurements of Laminar Burning Velocities and Markstein Lengths of 2,5-Dimethylfuranâ^'Airâ^'Diluent Premixed Flames. Energy & Fuels, 2009, 23, 4355-4362.	2.5	68
85	Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol–air mixtures. Fuel, 2013, 112, 263-271.	3.4	68
86	Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol. Atmospheric Environment, 2008, 42, 8843-8851.	1.9	67
87	Further study on the ignition delay times of propane–hydrogen–oxygen–argon mixtures: Effect of equivalence ratio. Combustion and Flame, 2013, 160, 2283-2290.	2.8	66
88	An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures. Combustion and Flame, 2014, 161, 644-656.	2.8	64
89	Experimental study on particulate emission of a diesel engine fueled with blended ethanol–dodecanol–diesel. Journal of Aerosol Science, 2009, 40, 101-112.	1.8	63
90	Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures. Fuel, 2012, 95, 234-240.	3.4	63

#	Article	IF	CITATIONS
91	Laminar burning velocities for mixtures of methanol and air at elevated temperatures. Energy Conversion and Management, 2007, 48, 857-863.	4.4	62
92	Effects of the addition of ethanol and cetane number improver on the combustion and emission characteristics of a compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 1077-1087.	1.1	62
93	Effect of dimethoxy-methane and exhaust gas recirculation on combustion and emission characteristics of a direct injection diesel engine. Fuel, 2011, 90, 1731-1737.	3.4	62
94	The effect of pentanol addition on the particulate emission characteristics of a biodiesel operated diesel engine. Fuel, 2017, 209, 132-140.	3.4	62
95	Performance and Emissions of a Compression Ignition Engine Fueled with Diesel/Oxygenate Blends for Various Fuel Delivery Advance Angles. Energy & Fuels, 2005, 19, 403-410.	2.5	61
96	Combustion Characteristics of a Direct-Injection Engine Fueled with Natural Gasâ^'Hydrogen Mixtures. Energy & Fuels, 2006, 20, 540-546.	2.5	61
97	Experimental and Modeling Study of <i>n</i> -Butanol Oxidation at High Temperature. Energy & Fuels, 2012, 26, 3368-3380.	2.5	61
98	Study of combustion characteristics of a compression ignition engine fuelled with dimethyl ether. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1999, 213, 647-652.	1.1	60
99	Experimental Study on Emissions of a Spark-Ignition Engine Fueled with Natural Gasâ~'Hydrogen Blends. Energy & Fuels, 2008, 22, 273-277.	2.5	60
100	The blow-off and transient characteristics of co-firing ammonia/methane fuels in a swirl combustor. Proceedings of the Combustion Institute, 2021, 38, 5181-5190.	2.4	60
101	Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel–dimethyl carbonate blends. Science of the Total Environment, 2011, 409, 523-529.	3.9	59
102	Effects of fuel composition and initial pressure on laminar flame speed of H2/CO/CH4 bio-syngas. Fuel, 2019, 238, 149-158.	3.4	59
103	Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combustion and Flame, 2013, 160, 2434-2441.	2.8	58
104	Thermal and Chemical Effects of Water Addition on Laminar Burning Velocity of Syngas. Energy & Fuels, 2014, 28, 3391-3398.	2.5	58
105	Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas. International Journal of Hydrogen Energy, 2009, 34, 507-518.	3.8	57
106	Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Experimental Thermal and Fluid Science, 2014, 52, 288-296.	1.5	57
107	Study of cyclic variations of direct-injection combustion fueled with natural gas–hydrogen blends using a constant volume vessel. International Journal of Hydrogen Energy, 2008, 33, 7580-7591.	3.8	56
108	High-Temperature Ignition Delay Times and Kinetic Study of Furan. Energy & Fuels, 2012, 26, 2075-2081.	2.5	56

#	Article	IF	CITATIONS
109	Laminar Flame Characteristics of <i>iso</i> -Octane/ <i>n</i> -Butanol Blend–Air Mixtures at Elevated Temperatures. Energy & Fuels, 2013, 27, 2327-2335.	2.5	56
110	Experimental and kinetic study on ignition delay times of DME/H2/O2/Ar mixtures. Combustion and Flame, 2014, 161, 735-747.	2.8	56
111	Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures. Fuel, 2016, 184, 466-473.	3.4	56
112	Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment. Energy, 2019, 172, 435-442.	4.5	56
113	Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route. ACS Sustainable Chemistry and Engineering, 2022, 10, 3079-3115.	3.2	56
114	Combustion characteristics and heat release analysis of a compression ignition engine operating on a diesel/methanol blend. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218, 1011-1024.	1.1	54
115	Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme. Atmospheric Environment, 2010, 44, 55-63.	1.9	54
116	Experimental and numerical study on the effect of composition on laminar burning velocities of H2/CO/N2/CO2/air mixtures. International Journal of Hydrogen Energy, 2012, 37, 18509-18519.	3.8	54
117	Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame. Combustion and Flame, 2015, 162, 2087-2097.	2.8	54
118	Kinetic analysis of H 2 addition effect on the laminar flame parameters of the C1–C4 n-alkane-air mixtures: From one step overall assumption to detailed reaction mechanism. International Journal of Hydrogen Energy, 2015, 40, 703-718.	3.8	54
119	Effect of Fuel Injection Timing Relative to Ignition Timing on the Natural-Gas Direct-Injection Combustion. Journal of Engineering for Gas Turbines and Power, 2003, 125, 783-790.	0.5	53
120	Effect of Methanol Addition into Gasoline on the Combustion Characteristics at Relatively Low Temperatures. Energy & Fuels, 2006, 20, 84-90.	2.5	53
121	Combustion Characteristics of a Direct-Injection Engine Fueled with Natural Gasâ^'Hydrogen Blends under Various Injection Timings. Energy & Fuels, 2006, 20, 1498-1504.	2.5	53
122	Comparison of the Effect of Biodiesel-Diesel and Ethanol-Diesel on the Particulate Emissions of a Direct Injection Diesel Engine. Aerosol Science and Technology, 2009, 43, 455-465.	1.5	53
123	Investigating the effect of hydrogen addition on cyclic variability in a natural gas spark ignition engine: Wavelet multiresolution analysis. Applied Energy, 2011, 88, 4860-4866.	5.1	53
124	Laminar Flame Speeds and Flame Instabilities of Pentanol Isomer–Air Mixtures at Elevated Temperatures and Pressures. Energy & Fuels, 2013, 27, 1141-1150.	2.5	53
125	Experimental and kinetic study on laminar flame speeds of ammonia/dimethyl ether/air under high temperature and elevated pressure. Combustion and Flame, 2022, 238, 111915.	2.8	53
126	Performance and Emission Characteristics of Diesel Engines Fueled with Dieselâ^'Dimethoxymethane (DMM) Blends. Energy & Fuels, 2009, 23, 286-293.	2.5	52

#	Article	IF	CITATIONS
127	Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. International Journal of Hydrogen Energy, 2013, 38, 11421-11428.	3.8	52
128	Explosion behavior predictions of syngas/air mixtures with dilutions at elevated pressures: Explosion and intrinsic flame instability parameters. Fuel, 2019, 255, 115724.	3.4	52
129	Measurements of Markstein numbers and laminar burning velocities for liquefied petroleum gas–air mixtures. Fuel, 2004, 83, 1281-1288.	3.4	51
130	Study on nitrogen diluted propane–air premixed flames at elevated pressures and temperatures. Energy Conversion and Management, 2010, 51, 288-295.	4.4	51
131	Experimental and numerical study of laminar premixed dimethyl ether/methane–air flame. Fuel, 2014, 136, 37-45.	3.4	51
132	Flame morphology and self-acceleration of syngas spherically expanding flames. International Journal of Hydrogen Energy, 2018, 43, 17531-17541.	3.8	51
133	Combustion and emission characteristics of a compression ignition engine fuelled with Diesel–dimethoxy methane blends. Energy Conversion and Management, 2006, 47, 1402-1415.	4.4	50
134	Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas. International Journal of Hydrogen Energy, 2008, 33, 3876-3885.	3.8	50
135	Effects of hydrogen addition on cellular instabilities of the spherically expanding propane flames. International Journal of Hydrogen Energy, 2009, 34, 2483-2487.	3.8	50
136	Combustion and emission characteristics of a spray guided direct-injection spark-ignition engine fueled with natural gas-hydrogen blends. International Journal of Hydrogen Energy, 2011, 36, 11155-11163.	3.8	50
137	Experimental study of 2,5-dimethylfuran and 2-methylfuran in a rapid compression machine: Comparison of the ignition delay times and reactivity at low to intermediate temperature. Combustion and Flame, 2016, 168, 216-227.	2.8	50
138	Measurements on flame structure of bluff body and swirl stabilized premixed flames close to blow-off. Experimental Thermal and Fluid Science, 2019, 104, 15-25.	1.5	50
139	Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number. Combustion and Flame, 2020, 212, 1-12.	2.8	50
140	Effects of fuel constituents and injection timing on combustion and emission characteristics of a compression-ignition engine fueled with diesel-DMM blends. Proceedings of the Combustion Institute, 2013, 34, 3013-3020.	2.4	49
141	Effects of equivalence ratio, H 2 and CO 2 addition on the heat release characteristics of premixed laminar biogas-hydrogen flame. International Journal of Hydrogen Energy, 2016, 41, 6567-6580.	3.8	49
142	Experimental and modeling study on ignition delay times of dimethoxy methane/ n -heptane blends. Fuel, 2017, 189, 350-357.	3.4	49
143	Experimental and kinetic study of pentene isomers and n-pentane in laminar flames. Proceedings of the Combustion Institute, 2017, 36, 1279-1286.	2.4	49
144	Laminar Flame Speeds of DMF/ <i>Iso</i> -octane-Air-N ₂ /CO ₂ Mixtures. Energy & Fuels, 2012, 26, 917-925.	2.5	48

#	Article	IF	CITATIONS
145	Measurements of Markstein Numbers and Laminar Burning Velocities for Natural Gasâ^'Air Mixtures. Energy & Fuels, 2004, 18, 316-326.	2.5	47
146	A comprehensive review on laminar spherically premixed flame propagation of syngas. Fuel Processing Technology, 2018, 181, 97-114.	3.7	47
147	Experimental and numerical study on the laminar burning velocity of hydrogen enriched biogas mixture. International Journal of Hydrogen Energy, 2019, 44, 22240-22249.	3.8	47
148	Study on the performance and emissions of a compression ignition engine fuelled with dimethyl ether. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214, 101-106.	1.1	46
149	Measurement of Laminar Burning Velocities of Dimethyl Etherâ^'Air Premixed Mixtures with N ₂ and CO ₂ Dilution. Energy & Fuels, 2009, 23, 735-739.	2.5	46
150	Laminar Burning Velocities and Markstein Lengths of 2,5-Dimethylfuran-Air Premixed Flames at Elevated Temperatures. Combustion Science and Technology, 2010, 183, 220-237.	1.2	46
151	Effect of H ₂ O Addition on the Flame Front Evolution of Syngas Spherical Propagation Flames. Combustion Science and Technology, 2016, 188, 1054-1072.	1.2	46
152	Investigation of the Cold-Start Combustion Characteristics of Ethanolâ^'Gasoline Blends in a Constant-Volume Chamber. Energy & Fuels, 2005, 19, 813-819.	2.5	45
153	Combustion characteristics of a compression-ignition engine fuelled with diesel–dimethoxy methane blends under various fuel injection advance angles. Applied Thermal Engineering, 2006, 26, 327-337.	3.0	45
154	Experimental and modeling study on the influences of methanol on premixed fuel-rich n-heptane flames. Fuel, 2013, 103, 467-472.	3.4	45
155	Effect of preferential diffusion and flame stretch on flame structure and laminar burning velocity of syngas Bunsen flame using OH-PLIF. International Journal of Hydrogen Energy, 2014, 39, 12187-12193.	3.8	45
156	Combustion Characteristics and Heat Release Analysis of a Spark-Ignited Engine Fueled with Natural Gasâ~'Hydrogen Blends. Energy & Fuels, 2007, 21, 2594-2599.	2.5	44
157	Characteristics of direct injection combustion fuelled by natural gas–hydrogen mixtures using a constant volume vessel. International Journal of Hydrogen Energy, 2008, 33, 1947-1956.	3.8	44
158	Effect of Injection Pressure on Flame and Soot Characteristics of the Biodiesel Fuel Spray. Combustion Science and Technology, 2010, 182, 1369-1390.	1.2	44
159	Shock-Tube Experiments and Kinetic Modeling of 2-Methylfuran Ignition at Elevated Pressure. Energy & Fuels, 2013, 27, 7809-7816.	2.5	44
160	Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures. International Journal of Hydrogen Energy, 2014, 39, 5176-5185.	3.8	44
161	Effects of Hydrogen Addition on the Laminar Flame Speed and Markstein Length of Premixed Dimethyl Ether–Air Flames. Energy & Fuels, 2015, 29, 4567-4575.	2.5	44
162	Technical Note: Investigation on emission characteristics of a compression ignition engine with oxygenated fuels and exhaust gas recirculation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214, 503-508.	1.1	43

#	Article	IF	CITATIONS
163	Effect of the compression ratio on the performance and combustion of a natural-gas direct-injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223, 85-98.	1.1	43
164	Comparative assessment of the explosion characteristics of alcohol–air mixtures. Journal of Loss Prevention in the Process Industries, 2015, 37, 91-100.	1.7	43
165	Laminar Flame Characteristics of C1–C5 Primary Alcohol-Isooctane Blends at Elevated Temperature. Energies, 2016, 9, 511.	1.6	43
166	Experimental and Kinetic Studies on Ignition Delay Times of Dimethyl Ether/ <i>n</i> -Butane/O ₂ /Ar Mixtures. Energy & Fuels, 2013, 27, 530-536.	2.5	42
167	Shock-Tube Measurements and Kinetic Modeling Study of Methyl Propanoate Ignition. Energy & Fuels, 2014, 28, 7194-7202.	2.5	42
168	Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models. International Journal of Hydrogen Energy, 2016, 41, 13261-13280.	3.8	42
169	Characterization of laminar premixed methanol–air flames. Fuel, 2006, 85, 1346-1353.	3.4	41
170	Combustion characteristics of methanol–air and methanol–air–diluent premixed mixtures at elevated temperatures and pressures. Applied Thermal Engineering, 2009, 29, 2680-2688.	3.0	41
171	Experimental and Modeling Study on Ignition Delay Times of Dimethyl Ether/Propane/Oxygen/Argon Mixtures at 20 bar. Energy & Fuels, 2013, 27, 4007-4013.	2.5	41
172	Laminar Flame Speeds and Kinetic Modeling of <i>n</i> -Pentanol and Its Isomers. Energy & Fuels, 2015, 29, 5334-5348.	2.5	41
173	Effects of N ₂ Dilution on Laminar Burning Characteristics of Propaneâ^'Air Premixed Flames. Energy & Fuels, 2009, 23, 151-156.	2.5	40
174	Flame front characteristics of turbulent premixed flames diluted with CO2 and H2O at high pressure and high temperature. Proceedings of the Combustion Institute, 2013, 34, 1429-1436.	2.4	40
175	Comparative Study of Experimental and Modeling Autoignition of Cyclohexane, Ethylcyclohexane, and <i>n</i> -Propylcyclohexane. Energy & Fuels, 2014, 28, 7159-7167.	2.5	40
176	Onset of cellular instability and self-acceleration propagation of syngas spherically expanding flames at elevated pressures. International Journal of Hydrogen Energy, 2019, 44, 27995-28006.	3.8	40
177	On the role of liquid viscosity in affecting droplet spreading on a smooth solid surface. International Journal of Multiphase Flow, 2019, 117, 53-63.	1.6	40
178	Measurements of laminar burning velocities and flame stability analysis for dissociated methanol–air–diluent mixtures at elevated temperatures and pressures. International Journal of Hydrogen Energy, 2009, 34, 4862-4875.	3.8	39
179	Measurement of laminar flame speeds and flame stability analysis of tert-butanol–air mixtures at elevated pressures. Energy Conversion and Management, 2011, 52, 3137-3146.	4.4	39
180	Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate. Atmospheric Environment, 2011, 45, 2174-2181.	1.9	39

#	Article	IF	CITATIONS
181	Experimental and Kinetic Study on the Ignition Delay Times of 2,5-Dimethylfuran and the Comparison to 2-Methylfuran and Furan. Energy & Fuels, 2015, 29, 5372-5381.	2.5	39
182	Cellular instabilities of non-adiabatic laminar flat methane/hydrogen oxy-fuel flames highly diluted with CO2. Fuel, 2015, 143, 38-46.	3.4	39
183	Explosion characteristics of n-butanol/iso-octane-air mixtures. Fuel, 2017, 188, 90-97.	3.4	39
184	Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method. Fuel, 2021, 304, 121370.	3.4	39
185	Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures. International Journal of Hydrogen Energy, 2009, 34, 3145-3155.	3.8	38
186	Effect of Compression Ratio on Cycle-by-Cycle Variations in a Natural Gas Direct Injection Engine. Energy & Fuels, 2009, 23, 5357-5366.	2.5	38
187	Dynamics of internal jets in the merging of two droplets of unequal sizes. Journal of Fluid Mechanics, 2016, 795, 671-689.	1.4	38
188	Shock tube measurement and simulation of DME/n-butane/air mixtures: Effect of blending in the NTC region. Fuel, 2017, 203, 316-329.	3.4	38
189	Shock Tube Measurements and Kinetic Study on Ignition Delay Times of Lean DME/ <i>n</i> -Butane Blends at Elevated Pressures. Energy & Fuels, 2013, 27, 6238-6246.	2.5	37
190	Experimental and Kinetic Study on Ignition Delay Times of <i>iso</i> -Butanol. Energy & Fuels, 2014, 28, 2160-2169.	2.5	37
191	Laminar burning velocities, Markstein lengths, and flame thickness of liquefied petroleum gas with hydrogen enrichment. International Journal of Hydrogen Energy, 2014, 39, 13020-13030.	3.8	37
192	Experimental and kinetic study on ignition delay times of dimethyl carbonate at high temperature. Fuel, 2015, 140, 626-632.	3.4	37
193	High temperature ignition delay time of DME/n-pentane mixture under fuel lean condition. Fuel, 2017, 191, 77-86.	3.4	37
194	The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm][DCA] and [BMIm][DCA]. Fuel, 2018, 215, 612-618.	3.4	37
195	Measurements and kinetic study on ignition delay times of propane/hydrogen in argon diluted oxygen. International Journal of Hydrogen Energy, 2013, 38, 2523-2530.	3.8	36
196	Towards a kinetic understanding of the NO promoting-effect on ignition of coalbed methane: A case study of methane/nitrogen dioxide mixtures. Fuel, 2016, 181, 188-198.	3.4	36
197	Energy, exergy and economic analyses and performance assessment of a trigeneration system for power, freshwater and heat based on supercritical water oxidation and organic Rankine cycle. Energy Conversion and Management, 2021, 243, 114395.	4.4	36
198	Measurement of Laminar Burning Velocities and Markstein Lengths for Diethyl Etherâ^'Air Mixtures at Different Initial Pressure and Temperature. Energy & Fuels, 2009, 23, 2490-2497.	2.5	35

#	Article	IF	CITATIONS
199	Experimental and kinetic comparative study on ignition characteristics of 1-pentene and n-pentane. Fuel, 2016, 172, 263-272.	3.4	35
200	Ab initio calculation and kinetic modeling study of diethyl ether ignition with application toward a skeletal mechanism for CI engine modeling. Fuel, 2017, 209, 509-520.	3.4	35
201	Experimental and numerical study on laminar burning velocity of gasoline and gasoline surrogates. Fuel, 2019, 256, 115933.	3.4	35
202	On transition to self-similar acceleration of spherically expanding flames with cellular instabilities. Combustion and Flame, 2020, 215, 364-375.	2.8	35
203	Large eddy simulation on flame topologies and the blow-off characteristics of ammonia/air flame in a model gas turbine combustor. Fuel, 2021, 298, 120846.	3.4	35
204	Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation. Thermal Science, 2014, 18, 269-277.	0.5	34
205	Comparative Study of High-Alcohol-Content Gasoline Blends in an SI Engine. , 0, , .		34
206	Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa. Experimental Thermal and Fluid Science, 2015, 68, 196-204.	1.5	34
207	Coulomb explosion and ultra-fast hypergolic ignition of borohydride-rich ionic liquids with WFNA. Combustion and Flame, 2018, 194, 464-471.	2.8	34
208	Time-resolved droplet size and velocity distributions in a dilute region of a high-pressure pulsed diesel spray. International Journal of Heat and Mass Transfer, 2019, 133, 745-755.	2.5	34
209	Effect of the diesel injection timing and the pilot quantity on the combustion characteristics and the fine-particle emissions in a micro-diesel pilot-ignited natural-gas engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227, 1142-1152.	1.1	33
210	Effect of pressure and equivalence ratio on the ignition characteristics of dimethyl ether-hydrogen mixtures. International Journal of Hydrogen Energy, 2014, 39, 19212-19223.	3.8	33
211	Development and validation of a reduced chemical kinetic model for dimethyl ether combustion. Fuel, 2015, 160, 165-177.	3.4	33
212	Effects of H2 and CO2 addition on the heat transfer characteristics of laminar premixed biogas–hydrogen Bunsen flame. International Journal of Heat and Mass Transfer, 2016, 98, 359-366.	2.5	33
213	Laminar flame characteristics and kinetic modeling study of methanol-isooctane blends at elevated temperatures. Fuel, 2016, 184, 836-845.	3.4	33
214	Experimental study on impingement spray and near-field spray characteristics under high-pressure cross-flow conditions. Fuel, 2018, 218, 12-22.	3.4	33
215	Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: A control comparison between biodiesel and diesel fuel. Fuel, 2022, 326, 124981.	3.4	33
216	Technical Note: Combustion characteristics and hydrocarbon emissions of a spark ignition engine fuelled with gasoline-oxygenate blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214, 341-346.	1.1	32

#	Article	IF	CITATIONS
217	Comparative Study on Autoignition Characteristics of Methylcyclohexane and Cyclohexane. Energy & Fuels, 2015, 29, 2685-2695.	2.5	32
218	Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge. Science of the Total Environment, 2022, 846, 157399.	3.9	32
219	Effect of the Addition of Diglyme in Diesel Fuel on Combustion and Emissions in a Compressionâ^'Ignition Engine. Energy & Fuels, 2007, 21, 2573-2583.	2.5	31
220	Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0MPa. Experimental Thermal and Fluid Science, 2013, 50, 90-96.	1.5	31
221	Experimental and Modeling Study on Ignition Delay Times of Dimethyl Ether/ <i>n</i> -Butane Blends at a Pressure of 2.0 MPa. Energy & Fuels, 2014, 28, 2189-2198.	2.5	31
222	Effect of hydrogen enrichment on swirl/bluff-body lean premixed flame stabilization. International Journal of Hydrogen Energy, 2020, 45, 10906-10919.	3.8	31
223	Shock tube study on ignition delay of multi-component syngas mixtures – Effect ofÂequivalence ratio. International Journal of Hydrogen Energy, 2014, 39, 6034-6043.	3.8	30
224	Heat transfer characteristics and the optimized heating distance of laminar premixed biogas-hydrogen Bunsen flame impinging on a flat surface. International Journal of Hydrogen Energy, 2015, 40, 15723-15731.	3.8	30
225	Ignition delay times measurement and kinetic modeling studies of 1-heptene, 2-heptene and n-heptane at low to intermediate temperatures by using a rapid compression machine. Combustion and Flame, 2018, 197, 30-40.	2.8	30
226	Effects of diluents on laminar burning characteristics of bio-syngas at elevated pressure. Fuel, 2019, 248, 8-15.	3.4	30
227	Combustion characteristics of natural gas injected into a constant volume vessel. Fuel, 2019, 235, 1146-1158.	3.4	30
228	Performance and Emissions of a Turbocharged, High-Pressure Common Rail Diesel Engine Operating on Biodiesel/Diesel Blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225, 127-139.	1.1	29
229	Comparative Study on Ignition Delay Times of C1–C4 Alkanes. Energy & Fuels, 2013, 27, 3480-3487.	2.5	28
230	Effects of stretch and preferential diffusion on tip opening of laminar premixed Bunsen flames of syngas/air mixtures. Fuel, 2015, 148, 1-8.	3.4	28
231	Investigation on characteristics of ion current in a methanol direct-injection spark-ignition engine. Fuel, 2015, 141, 185-191.	3.4	28
232	Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and LES modelling. Applied Thermal Engineering, 2019, 160, 114021.	3.0	28
233	Effects of n-Butanol Addition on the Performance and Emissions of a Turbocharged Common-Rail Diesel Engine. , 2012, , .		27
234	Experimental and Numerical Study on the Laminar Flame Speed of <i>n</i> -Butane/Dimethyl Ether–Air Mixtures. Energy & Fuels, 2014, 28, 3412-3419.	2.5	27

#	Article	IF	CITATIONS
235	Effect of H2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame. International Journal of Hydrogen Energy, 2016, 41, 9653-9663.	3.8	27
236	Low temperature auto-ignition characteristics of methylcyclohexane/ethanol blend fuels: Ignition delay time measurement and kinetic analysis. Energy, 2019, 177, 465-475.	4.5	27
237	Effect of differential diffusion on turbulent lean premixed hydrogen enriched flames through structure analysis. International Journal of Hydrogen Energy, 2020, 45, 10920-10931.	3.8	27
238	Pd nanoparticles supported on CeO2 nanospheres as efficient catalysts for dehydrogenation from additive-free formic acid at low temperature. Fuel, 2021, 302, 121142.	3.4	27
239	Study of cycle-by-cycle variations of natural gas direct injection combustion using a rapid compression machine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 53-61.	1.1	26
240	Combustion characteristics of a compression ignition engine fuelled with diesel—ethanol blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 265-274.	1.1	26
241	Experimental and kinetic study on ignition delay times of lean n -butane/hydrogen/argon mixtures at elevated pressures. International Journal of Hydrogen Energy, 2017, 42, 12645-12656.	3.8	26
242	An ignition delay time and chemical kinetic study of ethane sensitized by nitrogen dioxide. Fuel, 2017, 207, 389-401.	3.4	26
243	Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept. Combustion Science and Technology, 2018, 190, 1354-1376.	1.2	26
244	Explosion characteristics of bio-syngas at various fuel compositions and dilutions in a confined vessel. Fuel, 2020, 259, 116254.	3.4	26
245	Approximation of flammability region for natural gas–air–diluent mixture. Journal of Hazardous Materials, 2005, 125, 23-28.	6.5	25
246	Correlations for laminar burning velocities of liquefied petroleum gas–air mixtures. Energy Conversion and Management, 2005, 46, 3175-3184.	4.4	25
247	Engine performance and emission characteristics of a compression ignition engine fuelled with diesel/dimethoxymethane blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219, 905-914.	1.1	25
248	Study on Flame Propagation Characteristics of Natural Gasâ	2.5	25
249	Study on cycle-by-cycle variations of combustion in a natural-gas direct-injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 1657-1667.	1.1	25
250	Experimental Study on Ethane Ignition Delay Times and Evaluation of Chemical Kinetic Models. Energy & Fuels, 2015, 29, 4557-4566.	2.5	25
251	Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals. Journal of Physical Chemistry A, 2017, 121, 1877-1889.	1.1	25
252	Experimental and kinetic modeling study on 2,4,4-trimethyl-1-pentene ignition behind reflected shock waves. Fuel, 2017, 195, 97-104.	3.4	25

#	Article	IF	CITATIONS
253	Promoting "adiabatic core―approximation in a rapid compression machine by an optimized creviced piston design. Fuel, 2019, 251, 328-340.	3.4	25
254	Combustion characteristics of natural-gas direct-injection combustion under various fuel injection timings. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 393-401.	1.1	24
255	Investigation on characteristics of ionization current in a spark-ignition engine fueled with natural gas–hydrogen blends with BSS de-noising method. International Journal of Hydrogen Energy, 2010, 35, 12918-12929.	3.8	24
256	Experimental and kinetic study on ignition delay times of methane/hydrogen/oxygen/nitrogen mixtures by shock tube. Science Bulletin, 2011, 56, 2853-2861.	1.7	24
257	Experimental and kinetic modeling study of methyl butanoate and methyl butanoate/methanol flames at different equivalence ratios and C/O ratios. Combustion and Flame, 2012, 159, 44-54.	2.8	24
258	A shock tube and kinetic modeling study of n-butanal oxidation. Combustion and Flame, 2013, 160, 1541-1549.	2.8	24
259	Shock tube and kinetic study of C2H6/H2/O2/Ar mixtures at elevated pressures. International Journal of Hydrogen Energy, 2014, 39, 6024-6033.	3.8	24
260	Kinetic modeling study of hydrogen addition effects on ignition characteristics of dimethyl ether at engine-relevant conditions. International Journal of Hydrogen Energy, 2015, 40, 5221-5235.	3.8	24
261	Shock Tube Study on Propanal Ignition and the Comparison to Propane, <i>n</i> -Propanol, and <i>i<i< i="">-Propanol. Energy & Fuels, 2016, 30, 717-724.</i<></i>	2.5	24
262	Experimental study on the effect of injector nozzle K factor on the spray characteristics in a constant volume chamber: Near nozzle spray initiation, the macroscopic and the droplet statistics. Fuel, 2017, 202, 583-594.	3.4	24
263	Laminar Burning Characteristics of Diluted <i>n</i> -Butanol/Air Mixtures. Combustion Science and Technology, 2011, 183, 1360-1375.	1.2	23
264	A high pressure shock tube study of 1-butene oxidation and its comparison with n -butane and alkenes. Fuel, 2015, 157, 21-27.	3.4	23
265	Experimental study on flame instabilities of laminar premixed CH4/H2/air non-adiabatic flat flames. Fuel, 2015, 159, 599-606.	3.4	23
266	Comparative study on the explosion characteristics of pentanol isomer–air mixtures. Fuel, 2015, 161, 78-86.	3.4	23
267	Experimental and kinetic study on laminar flame speeds of styrene and ethylbenzene. Fuel, 2016, 185, 916-924.	3.4	23
268	Combustion characteristic and heating performance of stoichiometric biogas–hydrogen–air flame. International Journal of Heat and Mass Transfer, 2016, 92, 807-814.	2.5	23
269	Kinetics of H abstraction and addition reactions of 2,4,4-trimethyl-1-pentene by OH radical. Fuel, 2017, 210, 646-658.	3.4	23
270	Numerical simulation of premixed combustion using the modified dynamic thickened flame model coupled with multi-step reaction mechanism. Fuel, 2018, 233, 346-353.	3.4	23

#	Article	IF	CITATIONS
271	Low to intermediate temperature oxidation studies of dimethoxymethane/n-heptane blends in a jet-stirred reactor. Combustion and Flame, 2019, 207, 20-35.	2.8	23
272	Experimental and Numerical Study on Autoignition Characteristics of the Polyoxymethylene Dimethyl Ether/Diesel Blends. Energy & Fuels, 2019, 33, 2538-2546.	2.5	23
273	Deep insights of HCNG engine research in China. Fuel, 2020, 263, 116612.	3.4	23
274	Experimental and numerical study of high-pressure-swirl injector sprays in a direct injection gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, 219, 617-629.	0.8	22
275	Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with Dieselâ^'Diethyl Adipate Blends. Energy & Fuels, 2007, 21, 1474-1482.	2.5	22
276	Particulate Emission Characteristics of a Compression Ignition Engine Fueled with Diesel–DMC Blends. Aerosol Science and Technology, 2011, 45, 137-147.	1.5	22
277	Experimental investigation on particulate emissions of a direct injection diesel engine fueled with diesel–diethyl adipate blends. Journal of Aerosol Science, 2011, 42, 264-276.	1.8	22
278	Experimental and Kinetic Study on Ignition Delay Times of Di- <i>n</i> -butyl Ether at High Temperatures. Energy & Fuels, 2014, 28, 5489-5496.	2.5	22
279	Experimental and kinetic modeling study of laminar flame characteristics of higher mixed alcohols. Fuel Processing Technology, 2019, 188, 30-42.	3.7	22
280	Turbulent flame structure characteristics of hydrogen enriched natural gas with CO2 dilution. International Journal of Hydrogen Energy, 2020, 45, 20426-20435.	3.8	22
281	Experimental evaluation over the effects of natural antioxidants on oxidation stability of binary biodiesel blend. International Journal of Energy Research, 2022, 46, 20437-20461.	2.2	22
282	Spray Characteristics of High-Pressure Swirl Injector Fueled with Methanol and Ethanol. Energy & Fuels, 2005, 19, 2394-2401.	2.5	21
283	Natural Gasâ 'Hydrogenâ 'Air Premixed Mixture Combustion with a Constant Volume Bomb. Energy & Fuels, 2007, 21, 692-698.	2.5	21
284	Study of Low-Pressure Premixed Dimethyl Ether/Hydrogen/Oxygen/Argon Laminar Flames with Photoionization Mass Spectrometry. Energy & Fuels, 2010, 24, 1628-1635.	2.5	21
285	Optimization on Ignition Timing and ECR Ratio of a Spark-Ignition Engine Fuelled with Natural Gas-Hydrogen Blends. , 0, , .		21
286	Shock-Tube Measurements of Ignition Delay Times for the Ethane/Dimethyl Ether Blends. Energy & Fuels, 2013, 27, 6247-6254.	2.5	21
287	Effect of di-n-butyl ether blending with soybean-biodiesel on the near-nozzle spray characteristics. Fuel, 2017, 191, 300-311.	3.4	21
288	Towards a kinetic understanding of the NOx sensitization effect on unsaturation hydrocarbons: A case study of ethylene/nitrogen dioxide mixtures. Proceedings of the Combustion Institute, 2019, 37, 719-726.	2.4	21

#	Article	IF	CITATIONS
289	Flame dynamics analysis of highly hydrogen-enrichment premixed turbulent combustion. International Journal of Hydrogen Energy, 2020, 45, 1072-1083.	3.8	21
290	Experimental study on the droplet characteristics in the spray tip region: Comparison between the free and impinging spray. Experimental Thermal and Fluid Science, 2021, 121, 110288.	1.5	21
291	Formations and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction: Effects of the variable CO2 proportion. Fuel, 2020, 276, 118096.	3.4	21
292	Measurement and scaling of turbulent burning velocity of ammonia/methane/air propagating spherical flames at elevated pressure. Combustion and Flame, 2022, 242, 112183.	2.8	21
293	A Basic Behavior of CNG DI Combustion in a Spark-Ignited Rapid Compression Machine JSME International Journal Series B, 2002, 45, 891-900.	0.3	20
294	Shock Tube and Kinetic Modeling Study of Cyclopentane and Methylcyclopentane. Energy & Fuels, 2015, 29, 428-441.	2.5	20
295	Experimental and Kinetic Study on Ignition Delay Times of Dimethyl Ether at High Temperatures. Energy & Fuels, 2015, 29, 3495-3506.	2.5	20
296	Comparative Study on Ignition Characteristics of 1-Hexene and 2-Hexene Behind Reflected Shock Waves. Energy & Fuels, 2016, 30, 5130-5137.	2.5	20
297	Experimental and numerical study on the emission characteristics of laminar premixed biogas-hydrogen impinging flame. Fuel, 2017, 195, 1-11.	3.4	20
298	Comparative Study of the Effects of Nitrous Oxide and Oxygen on Ethylene Ignition. Energy & Fuels, 2017, 31, 14116-14128.	2.5	20
299	Chemical Kinetics of H-Atom Abstraction from Ethanol by HÈ® ₂ : Implication for Combustion Modeling. Journal of Physical Chemistry A, 2019, 123, 971-982.	1.1	20
300	Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames. International Journal of Hydrogen Energy, 2021, 46, 25699-25711.	3.8	20
301	Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Dieselâ^'Propane Blends. Energy & Fuels, 2007, 21, 1504-1510.	2.5	19
302	Measurement of laminar burning velocities and analysis of flame stabilities for hydrogen-air-diluent premixed mixtures. Science Bulletin, 2009, 54, 846-857.	4.3	19
303	A study on the effects of air preheat on the combustion and heat transfer characteristics of Bunsen flames. Fuel, 2016, 184, 50-58.	3.4	19
304	Ignition delay times of low alkylfurans at high pressures using a rapid compression machine. Proceedings of the Combustion Institute, 2017, 36, 323-332.	2.4	19
305	Experimental and kinetic study of 2,4,4-trimethyl-1-pentene and iso-octane in laminar flames. Proceedings of the Combustion Institute, 2019, 37, 1709-1716.	2.4	19
306	Turbulent flame topology and the wrinkled structure characteristics of high pressure syngas flames up to 1.0ÂMPa. International Journal of Hydrogen Energy, 2019, 44, 15973-15984.	3.8	19

#	Article	IF	CITATIONS
307	Effects of H2 addition on the formation and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction. Fuel, 2020, 259, 116257.	3.4	19
308	Ignition delay time measurement and kinetic modeling of furan, and comparative studies of 2,3-dihydrofuran and tetrahydrofuran at low to intermediate temperatures by using a rapid compression machine. Combustion and Flame, 2020, 213, 226-236.	2.8	19
309	Large eddy simulation of the Cambridge/Sandia stratified flame with flamelet-generated manifolds: Effects of non-unity Lewis numbers and stretch. Combustion and Flame, 2021, 227, 106-119.	2.8	19
310	An experimental and kinetic modeling study on the low-temperature oxidation, ignition delay time, and laminar flame speed of a surrogate fuel for RP-3 kerosene. Combustion and Flame, 2022, 237, 111821.	2.8	19
311	Effects of NH3/H2/N2 addition on soot morphology and nanostructure in laminar co-flow ethylene diffusion flame. International Journal of Hydrogen Energy, 2022, 47, 16321-16334.	3.8	19
312	Shock-Tube Study on Ethylcyclohexane Ignition. Energy & amp; Fuels, 2014, 28, 5505-5514.	2.5	18
313	Non-monotonic behaviors of laminar burning velocities of H2/O2/He mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2017, 42, 22036-22045.	3.8	18
314	Shock-Tube Study of the Autoignition of <i>n</i> Butane/Hydrogen Mixtures. Energy & Fuels, 2018, 32, 809-821.	2.5	18
315	The auto-ignition boundary of ethylene/nitrous oxide as a promising monopropellant. Combustion and Flame, 2020, 221, 64-73.	2.8	18
316	Effect of high hydrogen enrichment on the outer-shear-layer flame of confined lean premixed CH4/H2/air swirl flames. International Journal of Hydrogen Energy, 2021, 46, 17969-17981.	3.8	18
317	Experimental and Kinetic Modeling Study on <i>trans</i> -3-Hexene Ignition behind Reflected Shock Waves. Energy & Fuels, 2016, 30, 706-716.	2.5	17
318	Kinetics of H abstraction and addition reactions of 2,4,4-trimethyl-2-pentene by OH radical. Chemical Physics Letters, 2018, 696, 125-134.	1.2	17
319	Ignition Delay Characteristics and Kinetic Investigation of Dimethyl Ether/ <i>n</i> -Pentane Binary Mixtures: Interpreting the Effect of the Equivalence Ratio and Dimethyl Ether Blending. Energy & Fuels, 2018, 32, 3814-3823.	2.5	17
320	An experimental comparative study of the stabilization mechanism of biogas-hydrogen diffusion flame. International Journal of Hydrogen Energy, 2019, 44, 1988-1997.	3.8	17
321	Water impact on the auto-ignition of kerosene/air mixtures under combustor relevant conditions. Fuel, 2020, 267, 117184.	3.4	17
322	Experimental study on structure and blow-off characteristics of NH3/CH4 co-firing flames in a swirl combustor. Fuel, 2022, 314, 123027.	3.4	17
323	Experimental investigations on efficiency and instability of combustion process in a diesel engine fueled with ternary blends of hydrogen peroxide additive/biodiesel/diesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 5929-5950.	1.2	17
324	Densities, Surface Tensions, and Viscosities of Dieselâ^'Oxygenate Mixtures at the Temperature 301.15 K. Energy & Fuels, 2007, 21, 1628-1630.	2.5	16

#	Article	IF	CITATIONS
325	Experimental Study on Premixed Combustion of Dimethyl Ether–Hydrogen–Air Mixtures. Energy & Fuels, 2008, 22, 967-971.	2.5	16
326	Shock Tube Measurements and Kinetic Study of Methyl Acetate Ignition. Energy & Fuels, 2015, 29, 2719-2728.	2.5	16
327	Single-valued prediction of markers on heat release rate for laminar premixed biogas-hydrogen and methane-hydrogen flames. Energy, 2017, 133, 35-45.	4.5	16
328	Kinetic modeling investigation on the coupling effects of H2 and CO2 addition on the laminar flame speed of hydrogen enriched biogas mixture. International Journal of Hydrogen Energy, 2020, 45, 27891-27903.	3.8	16
329	An Investigation on Simulation Models and Reduction Methods of Unburned Hydrocarbon Emissions in Spark Ignition Engines. Combustion Science and Technology, 1996, 115, 105-123.	1.2	15
330	Flame instability analysis of diethyl ether-air premixed mixtures at elevated pressures. Science Bulletin, 2010, 55, 314-320.	1.7	15
331	Combustion characteristics and particulate emission in a natural-gas direct-injection engine: Effects of the injection timing and the spark timing. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2010, 224, 1071-1080.	1.1	15
332	A Comparative Study of Two Kinds of Biodiesels and Biodiesel-DEE Blends in a Common Rail Diesel Engine. SAE International Journal of Fuels and Lubricants, 0, 4, 96-109.	0.2	15
333	Effect of Lewis Number on Nonlinear Extrapolation Methods from Expanding Spherical Flames. Combustion Science and Technology, 2017, 189, 1510-1526.	1.2	15
334	Laminar Flame Characteristics and Kinetic Modeling Study of Ethyl Tertiary Butyl Ether Compared with Methyl Tertiary Butyl Ether, Ethanol, iso-Octane, and Gasoline. Energy & Fuels, 2018, 32, 3935-3949.	2.5	15
335	Comprehensive experimental and kinetic study of 2,4,4-trimethyl-1-pentene oxidation. Combustion and Flame, 2019, 208, 246-261.	2.8	15
336	Experimental study on the explosion characteristics of methylcyclohexane/toluene-air mixtures with methanol addition at elevated temperatures. Chemical Engineering Research and Design, 2019, 132, 126-133.	2.7	15
337	Comparative study on the laminar flame speeds of methylcyclohexane-methanol and toluene-methanol blends at elevated temperatures. Fuel, 2019, 245, 534-543.	3.4	15
338	Experimental study of compact swirl flames with lean premixed CH4/H2/air mixtures at stable and near blow-off conditions. Experimental Thermal and Fluid Science, 2021, 122, 110294.	1.5	15
339	Effect of hydrogen enrichment on flame broadening of turbulent premixed flames in thin reaction regime. International Journal of Hydrogen Energy, 2021, 46, 1210-1218.	3.8	15
340	Effects of hydrogen injection strategy on the hydrogen mixture distribution and combustion of a gasoline/hydrogen SI engine under lean burn condition. International Journal of Hydrogen Energy, 2022, 47, 24069-24079.	3.8	15
341	Flame Propagation Speed of CO ₂ Diluted Hydrogen-Enriched Natural Gas and Air Mixtures. Energy & Fuels, 2009, 23, 4957-4965.	2.5	14
342	Combustion and particulate emission characteristics of a diesel engine fuelled with diesel—dimethoxymethane blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2010, 224, 521-531.	1.1	14

#	Article	IF	CITATIONS
343	Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends. Frontiers in Energy, 2011, 5, 104-114.	1.2	14
344	Progress in hydrogen enriched hydrocarbons combustion and engine applications. Frontiers in Energy, 2014, 8, 73-80.	1.2	14
345	A comparison study of cyclopentane and cyclohexane laminar flame speeds at elevated pressures and temperatures. Fuel, 2018, 234, 238-246.	3.4	14
346	One-pot preparation of MnO _x impregnated cotton fibers for methylene blue dye removal. RSC Advances, 2018, 8, 21577-21584.	1.7	14
347	Experimental and kinetic study on laminar flame speeds of hexene isomers and n-hexane. Fuel, 2019, 243, 533-540.	3.4	14
348	Effects of CO/H2/N2 addition on the soot morphology and nanostructure in laminar co-flow ethylene diffusion flame. Journal of the Energy Institute, 2021, 95, 8-17.	2.7	14
349	Investigation into hydrocarbon emissions from crevice and oil film during cold start and idling periods in a spark ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1998, 212, 501-505.	1.1	13
350	Correlation of Ignitability with Injection Timing for Direct Injection Combustion Fuelled with Compressed Natural Gas and Gasoline. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 499-506.	1.1	13
351	Combustion and emission characteristics of a diesel engine fuelled with diesel–propane blends. Fuel, 2008, 87, 1711-1717.	3.4	13
352	Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR. Frontiers of Energy and Power Engineering in China, 2009, 3, 204-211.	0.4	13
353	Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend. Frontiers in Energy, 2011, 5, 412.	1.2	13
354	Performance and emission characteristics of a hydrogen-enriched compressed-natural-gas direct-injection spark ignition engine diluted with exhaust gas recirculation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 226, 123-132.	1.1	13
355	A review of engine application and fundamental study on turbulent premixed combustion of hydrogen enriched natural gas. Science China Technological Sciences, 2014, 57, 445-451.	2.0	13
356	Flame-Front Instabilities of Outwardly Expanding Isooctane/ <i>n</i> -Butanol Blend–Air Flames at Elevated Pressures. Energy & Fuels, 2014, 28, 2258-2266.	2.5	13
357	Experimental Observation of Hypergolic Ignition of Superbase-Derived Ionic Liquids. Journal of Propulsion and Power, 2018, 34, 125-132.	1.3	13
358	Effect of hydrogen enrichment and electric field on lean CH4/air flame propagation at elevated pressure. International Journal of Hydrogen Energy, 2019, 44, 15962-15972.	3.8	13
359	The spray vaporization characteristics of gasoline/diethyl ether blends at sub-and super-critical conditions. Applied Thermal Engineering, 2020, 164, 114453.	3.0	13
360	Experimental and kinetic study on laminar flame speeds of formic acid. Combustion and Flame, 2020, 220, 73-81.	2.8	13

#	Article	IF	CITATIONS
361	A kinetics and dynamics study on the auto-ignition of dimethyl ether at low temperatures and low pressures. Proceedings of the Combustion Institute, 2021, 38, 601-609.	2.4	13
362	Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames. Proceedings of the Combustion Institute, 2021, 38, 2013-2021.	2.4	13
363	Characteristics of the ignition and combustion of biodiesel fuel spray injected by a common-rail injection system for a direct-injection diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2010, 224, 1581-1596.	1.1	12
364	The relationship between ion current and temperature at the electrode gap. Applied Thermal Engineering, 2012, 33-34, 15-23.	3.0	12
365	Study on ignition delay of multiâ€component syngas using shock tube. Canadian Journal of Chemical Engineering, 2014, 92, 861-870.	0.9	12
366	Experimental and Kinetic Study on Ignition Delay Times of Diethyl Ether. SAE International Journal of Fuels and Lubricants, 0, 8, 111-118.	0.2	12
367	Emission of impinging biogas/air premixed flame with hydrogen enrichment. International Journal of Hydrogen Energy, 2016, 41, 2087-2095.	3.8	12
368	Systematic investigation of premixed methane/air turbulent impinging flames. Experimental Thermal and Fluid Science, 2016, 70, 335-340.	1.5	12
369	High-temperature oxidation kinetics of iso-octane/n-butanol blends-air mixture. Energy, 2017, 133, 443-454.	4.5	12
370	Flame brush thickness of lean turbulent premixed Bunsen flame and the memory effect on its development. Fuel, 2019, 242, 607-616.	3.4	12
371	Explosion characteristics of cyclic hydrocarbon-air mixtures at elevated temperature and pressures. Fuel, 2019, 253, 1048-1055.	3.4	12
372	Flame front identification and its effect on turbulent premixed flames topology at high pressure. Experimental Thermal and Fluid Science, 2019, 107, 107-117.	1.5	12
373	Effect of hydrogen ratio on turbulent flame structure of oxyfuel syngas at high pressure up to 1.0ÂMPa. International Journal of Hydrogen Energy, 2019, 44, 11185-11193.	3.8	12
374	Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures. Frontiers in Energy, 2019, 13, 464-473.	1.2	12
375	Experimental and kinetic study of laminar flame characteristics of H2/O2/diluent flame under elevated pressure. International Journal of Hydrogen Energy, 2020, 45, 32508-32520.	3.8	12
376	Experimental and kinetic study on the low temperature oxidation and pyrolysis of formic acid in a jet-stirred reactor. Combustion and Flame, 2021, 223, 77-87.	2.8	12
377	Performance and Emissions of Direct Injection Diesel Engine Fueled with Diesel Fuel Containing Dissolved Methane. Energy & Fuels, 2006, 20, 504-511.	2.5	11
378	Study on Dimethyl Etherâ^'Air Premixed Mixture Combustion with a Constant Volume Vessel. Energy & Fuels, 2007, 21, 2013-2017.	2.5	11

ZUOHUA HUANG

#	Article	IF	CITATIONS
379	Experimental Study on Combustion Characteristics of N ₂ -Diluted Diethyl Etherâ^'Air Mixtures. Energy & Fuels, 2009, 23, 5798-5805.	2.5	11
380	Numerical study on combustion of diluted methanol-air premixed mixtures. Science Bulletin, 2010, 55, 882-889.	1.7	11
381	Shock tube study on auto-ignition characteristics of kerosene/air mixtures. Science Bulletin, 2011, 56, 1399-1406.	1.7	11
382	Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy, 2016, 104, 284-294.	4.5	11
383	Auto-ignition behaviors of nitromethane in diluted oxygen in a rapid compression machine: Critical conditions for ignition, ignition delay times measurements, and kinetic modeling interpretation. Journal of Hazardous Materials, 2019, 377, 52-61.	6.5	11
384	A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame. Fuel, 2019, 251, 730-738.	3.4	11
385	Transient response of waste heat recovery system for hydrogen production and other renewable energy utilization. International Journal of Hydrogen Energy, 2019, 44, 15985-15996.	3.8	11
386	Low temperature ignition delay times measurements of 1,3,5-trimethylbenzene by rapid compression machine. Fuel, 2019, 241, 637-645.	3.4	11
387	Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature. Fibers, 2021, 9, 28.	1.8	11
388	Turbulent burning velocity and its unified scaling of butanol isomers/air mixtures. Fuel, 2021, 306, 121738.	3.4	11
389	Biphasic sensitization effect of NO2 on n-C4H10 auto-ignition. Combustion and Flame, 2022, 237, 111844.	2.8	11
390	Prediction and Experimental Study on Hydrocarbon Emissions from Combustion Chamber Deposits in a Spark Ignition Engine. Combustion Science and Technology, 1998, 131, 67-83.	1.2	10
391	Experimental Investigation of the Effect of Electrodes on the Ionization Current during Combustion. Energy & Fuels, 2008, 22, 2941-2947.	2.5	10
392	Effect of Injection Pressure on Ignition, Flame Development and Soot Formation Processes of Biodiesel Fuel Spray. SAE International Journal of Fuels and Lubricants, 2010, 3, 1057-1070.	0.2	10
393	Study on the Effects of Dielectric Barrier Discharge on the Bunsen Flame Structure With OH-PLIF Technique. IEEE Transactions on Plasma Science, 2014, 42, 2332-2333.	0.6	10
394	Measurements and kinetic study on the ignition delay time of dimethyl carbonate/n-heptane/oxygen/argon mixtures. Combustion Science and Technology, 2018, 190, 933-948.	1.2	10
395	Morphology of wrinkles along the surface of turbulent Bunsen flames – Their amplification and advection due to the Darrieus–Landau instability. Proceedings of the Combustion Institute, 2019, 37, 2335-2343.	2.4	10
396	Non-monotonic behavior of flame instability of 1,3-butadiene/O2/He mixture up to 1.5â€⁻MPa. Fuel, 2019, 255, 115749.	3.4	10

#	Article	IF	CITATIONS
397	Experimental and kinetic study on laminar burning velocities of 1,3-butadiene at pressures up to 1.5†MPa. Fuel, 2019, 246, 222-231.	3.4	10
398	Kinetic Study on the Isomerization and Decomposition of the Alkenyl Radicals of 2,4,4-Trimethyl-1-pentene. Energy & Fuels, 2020, 34, 14757-14767.	2.5	10
399	Spreading and bouncing of liquid alkane droplets upon impacting on a heated surface. International Journal of Heat and Mass Transfer, 2020, 159, 120076.	2.5	10
400	Direct numerical simulation of DME auto-ignition with temperature and composition stratification under HCCI engine conditions. Fuel, 2021, 285, 119073.	3.4	10
401	An experimental study of premixed laminar methane/oxygen/argon flames doped with hydrogen at low pressure with synchrotron photoionization. Science Bulletin, 2008, 53, 1262-1269.	4.3	9
402	The interdependency between the maximal pressure and ion current in a spark-ignition engine. International Journal of Engine Research, 2013, 14, 320-332.	1.4	9
403	Ignition Delay Time and Chemical Kinetic Study of Methane and Nitrous Oxide Mixtures at High Temperatures. Energy & Fuels, 0, , .	2.5	9
404	Investigation on the highly negative curved syngas Bunsen flame and the critical local Karlovitz number when tip opening. Fuel, 2018, 215, 429-437.	3.4	9
405	Effects of shear inhomogeneities on the structure of turbulent premixed flames. Combustion and Flame, 2019, 208, 63-78.	2.8	9
406	Measurements of the High Temperature Ignition Delay Times and Kinetic Modeling Study on Oxidation of Nitromethane. Combustion Science and Technology, 2020, 192, 313-334.	1.2	9
407	The auto-ignition behaviors of HMX/NC/NG stimulated by heating in a rapid compression machine. Fuel, 2021, 288, 119693.	3.4	9
408	Experimental and kinetic study on laminar flame speeds of ammonia/syngas/air at a high temperature and elevated pressure. Frontiers in Energy, 2022, 16, 263-276.	1.2	9
409	Basic characteristics of direct injection combustion fuelled with compressed natural gas and gasoline using a rapid compression machine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 1031-1038.	1.1	8
410	Characteristics of Nonevaporating Free Sprays of a High-Pressure Swirl Injector under Various Ambient and Injection Pressures. Energy & Fuels, 2005, 19, 1906-1910.	2.5	8
411	Effect of Hot Exhaust Gas Recirculation on the Combustion Characteristics and Particles Emissions of a Pilot-Ignited Natural Gas Engine. SAE International Journal of Engines, 2013, 6, 1116-1125.	0.4	8
412	Study on the effect of hydrogen addition to dimethyl ether homogeneous charge compression ignition combustion engine. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	8
413	Development of a turbulence scale controllable burner and turbulent flame structure analysis. Experimental Thermal and Fluid Science, 2019, 109, 109898.	1.5	8
414	Effects of Integral Scale on Darrieus–Landau Instability in Turbulent Premixed Flames. Flow, Turbulence and Combustion, 2019, 103, 225-246.	1.4	8

ZUOHUA HUANG

#	Article	IF	CITATIONS
415	A Systematic Theoretical Kinetics Analysis for the Waddington Mechanism in the Low-Temperature Oxidation of Butene and Butanol Isomers. Journal of Physical Chemistry A, 2020, 124, 5646-5656.	1.1	8
416	Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame. Energy, 2020, 196, 117146. Ing CHAMMEMATH	4.5	8
417	xmins:mmi= http://www.w3.org/1998/Math/MathML_display= inline_id= d1e1190 altimg="si154.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow </mml:msub> /H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1198"</mml:math 	3.4	8
418	Visualization study of natural gas direct injection combustion. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 667-676.	1.1	7
419	Theoretical kinetics of hydrogen abstraction and addition reactions of 3-hexene by á,¢, Ö(3P) and ÄŠH3. Combustion and Flame, 2018, 197, 449-462.	2.8	7
420	Pressure-dependent kinetics on benzoyl radicalÂ+ÂO2 and its implications for low temperature oxidation of benzaldehyde. Combustion and Flame, 2020, 214, 139-151.	2.8	7
421	Effect of Rotating Gliding Arc Plasma on Lean Blow-Off Limit and Flame Structure of Bluff Body and Swirl-Stabilized Premixed Flames. IEEE Transactions on Plasma Science, 2021, 49, 3554-3565.	0.6	7
422	Experimental Study on Flashing Atomization of Methane/Liquid Fuel Binary Mixtures. Energy & Fuels, 2005, 19, 2050-2055.	2.5	6
423	Numerical study of EGR effects on reducing the pressure rise rate of HCCI engine combustion. Frontiers of Energy and Power Engineering in China, 2010, 4, 376-385.	0.4	6
424	Shock Tube and Kinetic Modeling Study of Isobutanal Oxidation. Energy & Fuels, 2013, 27, 2804-2810.	2.5	6
425	The correlation between the cylinder pressure and the ion current fitted with a Gaussian algorithm for a spark ignition engine fuelled with natural-gas–hydrogen blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228, 1480-1490.	1.1	6
426	Theoretical Study of Abstraction and Addition Reactions of 2,4,4-Trimethyl-1-pentene with H and O(³ P) Radical. Energy & Fuels, 2018, 32, 11831-11842.	2.5	6
427	Effect of DC electric field on laminar premixed spherical propagation flame at elevated pressures up to 0.5ÂMPa. Combustion Science and Technology, 2018, 190, 1900-1922.	1.2	6
428	Network topology of turbulent premixed Bunsen flame at elevated pressure and turbulence intensity. Aerospace Science and Technology, 2019, 94, 105361.	2.5	6
429	Experimental and kinetic study of diisobutylene isomers in laminar flames. Energy, 2019, 170, 537-545.	4.5	6
430	Nitromethane pyrolysis and oxidation in a jet-stirred reactor: Experimental measurements, kinetic model validation and interpretation. Fuel, 2020, 263, 116491.	3.4	6
431	Effect of hydrogen enrichment on the auto-ignition of lean n-pentane/Hydrogen mixtures at elevated pressure. International Journal of Hydrogen Energy, 2020, 45, 31105-31117.	3.8	6

432 Development and Calibration on an Electronic Control System of CNG Engine. , 2006, , .

5

#	Article	IF	CITATIONS
433	Ultra-low-emission diesel engine fuelled with dimethoxymethane—diesel fuel blends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223, 931-940.	1.1	5
434	Study on Laminar Burning Characteristics of Premixed High-Octane Fuelâ^'Air Mixtures at Elevated Pressures and Temperatures. Energy & Fuels, 2010, 24, 965-972.	2.5	5
435	Ab initio calculation for isomerization reaction kinetics of nitrobenzene isomers. Chemical Physics Letters, 2019, 715, 244-251.	1.2	5
436	Theoretical kinetics of hydrogen abstraction and hydroperoxyl addition reactions of 3-hexene by hydroperoxyl radicals. Fuel, 2020, 277, 118191.	3.4	5
437	The auto-ignition behaviors and risk assessments of double-base propellant containing different 1,1-diamino-2,2-dinitroethene particle sizes under rapid heating. Combustion and Flame, 2021, 234, 111627.	2.8	5
438	DECOUPLING THE EFFECT OF SURFACE TENSION AND VISCOSITY ON SPRAY CHARACTERISTICS UNDER DIFFERENT AMBIENT PRESSURES: NEAR-NOZZLE BEHAVIOR AND MACROSCOPIC CHARACTERISTICS. Atomization and Sprays, 2019, 29, 629-654.	0.3	5
439	Effect of confinement ratio on flame structure and blow-off characteristics of swirl flames. Experimental Thermal and Fluid Science, 2022, 135, 110630.	1.5	5
440	Spray characteristics of high-pressure swirl injector fueled with alcohol. Frontiers of Energy and Power Engineering in China, 2007, 1, 105-112.	0.4	4
441	Effect of ignition timing and hydrogen fraction on combustion and emission characteristics of natural gas direct-injection engine. Frontiers of Energy and Power Engineering in China, 2008, 2, 194-201.	0.4	4
442	Study on Ignition Delay Times of DME and n-Butane Blends. , 0, , .		4
443	Experimental and Modeling Study on Auto-Ignition of DME/n-Butane Blends under Engine Relevant Pressure. , 2014, , .		4
444	Effect of the pilot quantity on the ultrafine particle emissions and the combustion characteristics of a biodiesel pilot-ignited natural-gas dual-fuel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229, 1060-1069.	1.1	4
445	Investigation of the Heat Loss Effect on Cellular Flames via Proper Orthogonal Decomposition. Combustion Science and Technology, 2018, 190, 803-822.	1.2	4
446	Velocimetry and thermometry in intermediate temperature flow using planar laser-induced fluorescence of OH from photo-dissociation of H2O. Experiments in Fluids, 2020, 61, 1.	1.1	4
447	Subpatterns of Thin-Sheet Splash on a Smooth Surface. Langmuir, 2020, 36, 4917-4922.	1.6	4
448	Rapid determination of trace Cu ²⁺ by an in-syringe membrane SPE and membrane solid-phase spectral technique. Analytical Methods, 2021, 13, 4691-4698.	1.3	4
449	Effect of DME addition on turbulent flame structure in lean premixed CH4/DME/air mixtures. Fuel, 2021, 294, 120443.	3.4	4
450	Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV. Frontiers in Energy, 2022, 16, 973-987.	1.2	4

#	Article	IF	CITATIONS
451	Rate coefficients for 1,2-dimethyl-allyl + HO2/O2 and the implications for 2-methyl-2-butene combustion. Combustion and Flame, 2021, 230, 111433.	2.8	4
452	Experimental and chemical kinetic study on the low temperature oxidation of 1,3-butadiene in a jet-stirred reactor. Fuel, 2022, 315, 123168.	3.4	4
453	A basic study on the ignition position of natural gas direct-injection super-lean combustion. Combustion Science and Technology, 2003, 175, 965-992.	1.2	3
454	Premixed Combustion of Diluted Hydrogenâ´'Air Mixtures in a Constant Volume Bomb. Energy & Fuels, 2009, 23, 1431-1436.	2.5	3
455	Measurement of laminar burning velocities of iso-butanol-air mixtures. Science Bulletin, 2010, 55, 2046-2056.	1.7	3
456	Numerical study of effects of the intermediates and initial conditions on flame propagation in a real homogeneous charge compression ignition engine. Thermal Science, 2014, 18, 79-87.	0.5	3
457	Influence of Biodiesel/Diesel Blends on Particulate Emissions in a Turbocharged Common Rail Diesel Engine. SAE International Journal of Fuels and Lubricants, 2014, 7, 643-652.	0.2	3
458	Darrieus-Landau instability effect on the flame topology and brush thickness for premixed turbulent flames. Applied Thermal Engineering, 2019, 158, 113603.	3.0	3
459	Evaluation of non-ideal piston stopping effects on the "adiabatic core―and ignition delay time simulation in rapid compression machines. Combustion and Flame, 2020, 218, 229-233.	2.8	3
460	Study on pressure oscillation characteristics in a constant volume bomb. Combustion and Flame, 2021, 229, 111387.	2.8	3
461	A data fusion approach with high spatiotemporal resolution for wall temperature measurement upon jet impingement. International Journal of Heat and Mass Transfer, 2022, 183, 122084.	2.5	3
462	Experimental Investigation on the Propagation Process of Combustion Wave in the Annular Channel Filled with Acetylene-Air/Oxygen Mixture. Flow, Turbulence and Combustion, 2022, 108, 797-817.	1.4	3
463	Experimental and kinetic study on low temperature oxidation and pyrolysis of iso-octane and gasoline. Fuel, 2022, 310, 122483.	3.4	3
464	Loading ferric lignin on polyethylene film and its influence on arsenic-polluted soil and growth of romaine lettuce plant. Environmental Science and Pollution Research, 2022, , 1.	2.7	3
465	A Study on the Effect of Initial Temperature on Combustion Characteristics of RDX Based on the Optical Diagnosis Methods. Energies, 2022, 15, 2421.	1.6	3
466	Study of low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames. Science Bulletin, 2009, 54, 1477-1486.	4.3	2
467	Experimental study on premixed combustion of spherically propagating methanol-air-nitrogen flames. Frontiers of Energy and Power Engineering in China, 2010, 4, 223-233.	0.4	2
468	Comparative Analysis on Performance and Particulate Emissions of a Turbocharged Common-Rail		2

Engine Fueled with Diesel and Biodiesels. , 0, , .

#	Article	IF	CITATIONS
469	Ab initio kinetics for isomerization reaction of normal-chain hexadiene isomers. Chemical Physics Letters, 2016, 663, 66-73.	1.2	2
470	Effects of Initiation Radius Selection and Lewis Number on Extraction of Laminar Burning Velocities from Spherically Expanding Flames. Combustion Science and Technology, 2017, , 1-26.	1.2	2
471	Planar laser-induced fluorescence thermometry in moderate-temperature flow using OH from photo-dissociation of water vapor. Experiments in Fluids, 2021, 62, 1.	1.1	2
472	Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen. Energies, 2021, 14, 2916.	1.6	2
473	Hierarchical Auto-Ignition and Structure-Reactivity Trends of C2–C4 1-Alkenes. Energies, 2021, 14, 5797.	1.6	2
474	Assessing the Predictions of A NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data. The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2017, 2017.9, A307.	0.1	2
475	Synergistic Effect of Mixing Ethylene with Propane on the Morphology and Nanostructure of Soot in Laminar Coflow Diffusion Flames. Journal of Energy Engineering - ASCE, 2022, 148, .	1.0	2
476	Shock Wave Propagation and Flame Kernel Morphology in Laser-Induced Plasma Ignition of CH4/O2/N2 Mixture. Energies, 2021, 14, 7976.	1.6	2
477	Experimental and chemical kinetic study on the laminar flame characteristics of the blends of n-propanol and isooctane at elevated temperature and pressure. Fuel, 2022, 324, 124680.	3.4	2
478	An experimental study on the hypergolic process enhanced by pre-ignition heat release: [AMIM][DCA]/furfuryl alcohol blends reacting with white fuming nitric acid. Fuel, 2022, 326, 125103.	3.4	2
479	Measurement on Turbulent Premixed Flame Structure of CH ₄ /H ₂ /Air Mixtures with CO ₂ Dilution. , 0, , .		1
480	Specific Heat Ratio of High Methane Fraction Natural Gas/Air in Confined Vessel. , 2015, , .		1
481	Study on the Laminar Characteristics of Ethanol, n-Butanol and n-Pentanol Flames. , 2015, , .		1
482	POD Scale Analysis of Turbulent Premixed Flame Structure at Elevated Pressures. Combustion Science and Technology, 2021, 193, 944-966.	1.2	1
483	Theoretical studies on the initial reaction kinetics and mechanisms of p-, m- and o-nitrotoluene. Physical Chemistry Chemical Physics, 2021, 23, 4658-4668.	1.3	1
484	Effect of Ionic Wind Induced by DC Electric Field on Biogas/Air Turbulent Premixed Flame Structure. Combustion Science and Technology, 0, , 1-19.	1.2	1
485	(3-03) Feasibility of CNG DI Stratified Combustion Using a Spark-Ignited Rapid Compression Machine((AF-1)Alternative Fuels 1-Gas Engines). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2001, 01.204, 49.	0.1	1
486	Experimental Study on Ignition Characteristics of RP-3 Jet Fuel Using Nanosecond Pulsed Plasma Discharge. Energies, 2021, 14, 6463.	1.6	1

#	Article	IF	CITATIONS
487	Experimental and model investigation of the low temperature oxidation and pyrolysis of 2-methyl-2-butene in a jet-stirred reactor. Combustion and Flame, 2022, 242, 112174.	2.8	1
488	NO/NO2 Concentration of direct injection stratified combustion under constant volume condition fuelled by compressed natural gas and gasoline. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217, 935-941.	1.1	0
489	SP3-1 Spray, Ignition and Combustion Characteristics of Biodiesel and Diesel Fuels Injected by Micro-Hole Nozzle under Ultra-High Injection Pressure(SP: Spray and Spray Combustion,General) Tj ETQq1 1 0.78	4314 rgBT 0.1	Overlock 1
	Combustion in Internal Combustion Engines. 2012. 2012.8. 674-679.		
490	To Study on Ignition Characteristics of Syngas Mixtures by Shock Tube. , 0, , .		0
491	The Autoâ€lgnition Behaviors and Thermal Safety of the Composite Modified Double Base Propellants under Rapid Heating. Propellants, Explosives, Pyrotechnics, 0, , .	1.0	0
	CT2-4: Experimental Study on Premixed Combustion of Dimethyl Ether-Hydrogen-Air Mixtures(CT:) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
492	Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2008, 2008.7, 511-518.	0.1	0
493	CT3-1: An experimental Study of Laminar Combustion of LPG-hydrogen-air mixture at room temperature(CT: Combustion, Thermal and Fluid Science, General Session Papers). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Fngines, 2008, 2008.7, 519-526.	0.1	0
494	CT1-1 Experimental and modeling study of the effects of equivalence ratio on the benzene formation chemistry of one-dimensional laminar premixed n-heptane flames(CT: Combustion, Thermal and Fluid) Tj ETQq0 0	0 ₀ rgBT /O	verlock 10 T
	Modeling of Combustion in Internal Combustion Engines, 2012, 2012.8, 226-231.		
495	Experimental and Kinetic Study on Ignition Delay Times of 2,5-DMF/n-Heptane Blends. The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2017, 2017.9, A301.	0.1	0
496	Effect of DC Electric Field on Turbulent Flame Structure and Turbulent Burning Velocity. Combustion Science and Technology, 0, , 1-21.	1.2	0