Qihan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669831/publications.pdf

Version: 2024-02-01

		430874	501196
56	940	18	28
papers	citations	h-index	g-index
60	60	60	1.470
62	62	62	1478
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preclinical immunological evaluation of an intradermal heterologous vaccine against SARS-CoV-2 variants. Emerging Microbes and Infections, 2022, 11, 212-226.	6.5	6
2	Absence of active systemic anaphylaxis in guinea pigs upon intramuscular injection of inactivated SARS-CoV-2 vaccine (Vero cells). Immunopharmacology and Immunotoxicology, 2022, , 1-8.	2.4	0
3	Immunological Study of Combined Administration of SARS-CoV-2 DNA Vaccine and Inactivated Vaccine. Vaccines, 2022, 10, 929.	4.4	3
4	Immunological evaluation of an mRNA vaccine booster in individuals fully immunized with an inactivated SARS oVâ€⊋ vaccine. Clinical and Translational Medicine, 2022, 12, .	4.0	4
5	Post hoc analysis of two clinical trials to compare the immunogenicity and safety of different polio immunization schedules in Chinese infants. Annals of Translational Medicine, 2021, 9, 253-253.	1.7	8
6	Identification of T Cell Epitopes in the Spike Glycoprotein of Severe Acute Respiratory Syndrome Coronavirus 2 in Rhesus Macaques. Journal of Immunology, 2021, 206, 2527-2535.	0.8	1
7	Intensified antibody response elicited by boost suggests immune memory in individuals administered two doses of SARS-CoV-2 inactivated vaccine. Emerging Microbes and Infections, 2021, 10, 1112-1115.	6.5	24
8	SARS-CoV-2 inactivated vaccine (Vero cells) shows good safety in repeated administration toxicity test of Sprague Dawley rats. Food and Chemical Toxicology, 2021, 152, 112239.	3.6	12
9	Immunological evaluation of an inactivated SARS-CoV-2 vaccine in rhesus macaques. Molecular Therapy - Methods and Clinical Development, 2021, 23, 108-118.	4.1	9
10	Waning antibodies from inactivated SARS-CoV-2 vaccination offer protection against infection without antibody-enhanced immunopathology in rhesus macaque pneumonia models. Emerging Microbes and Infections, 2021, 10, 2194-2198.	6.5	10
11	Effectiveness and Safety of an Inactivated Enterovirus 71 Vaccine in Children Aged 6–71 Months in a Phase IV Study. Clinical Infectious Diseases, 2020, 71, 2421-2427.	5.8	29
12	Immunization of human hepatitis E viruses conferred protection against challenge by a camel hepatitis E virus. Vaccine, 2020, 38, 7316-7322.	3.8	3
13	A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect. PLoS Pathogens, 2020, 16, e1008703.	4.7	3
14	The Mutation of the Genes Related to Neurovirulence in HSV-2 Produces an Attenuated Phenotype in Mice. Viruses, 2020, 12, 770.	3.3	6
15	Distinct infection process of SARSâ€CoVâ€2 in human bronchial epithelial cell lines. Journal of Medical Virology, 2020, 92, 2830-2838.	5.0	37
16	Generation of cynomolgus monkey fetuses with intracytoplasmic sperm injection based on the MII-stage oocytes acquired by personalized superovulation protocol. Journal of Veterinary Science, 2020, 21, e48.	1.3	3
17	A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect. , 2020, 16 , e1008703.		O
18	A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect., 2020, 16, e1008703.		0

#	Article	IF	Citations
19	A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect., 2020, 16, e1008703.		O
20	A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect., 2020, 16 , e1008703.		0
21	Reducing Viral Inhibition of Host Cellular Apoptosis Strengthens the Immunogenicity and Protective Efficacy of an Attenuated HSV-1 Strain. Virologica Sinica, 2019, 34, 673-687.	3.0	3
22	Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Reviews in Medical Virology, 2019, 29, e2054.	8.3	38
23	Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain. Vaccine, 2018, 36, 2394-2402.	3.8	8
24	Immune Evasion of Enteroviruses Under Innate Immune Monitoring. Frontiers in Microbiology, 2018, 9, 1866.	3.5	15
25	Attenuated Phenotype and Immunogenic Characteristics of a Mutated Herpes Simplex Virus 1 Strain in the Rhesus Macaque. Viruses, 2018, 10, 234.	3.3	8
26	RNA gene profile variation in peripheral blood mononuclear cells from rhesus macaques immunized with Hib conjugate vaccine, Hib capsular polysaccharide and TT carrier protein. BMC Immunology, 2018, 19, 4.	2.2	3
27	Extracellular Interactions between Hepatitis C Virus and Secreted Apolipoprotein E. Journal of Virology, 2017, 91, .	3.4	19
28	CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Scientific Reports, 2017, 7, 39861.	3.3	38
29	Attenuated phenotypes and analysis of a herpes simplex virus 1 strain with partial deletion of the UL7, UL41 and LAT genes. Virologica Sinica, 2017, 32, 404-414.	3.0	10
30	C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis. Cell Death and Disease, 2017, 8, e3146-e3146.	6.3	22
31	Immune Serum From Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses. Clinical Infectious Diseases, 2017, 64, 1317-1325.	5.8	22
32	The Characteristics of Herpes Simplex Virus Type 1 Infection in Rhesus Macaques and the Associated Pathological Features. Viruses, 2017, 9, 26.	3.3	10
33	Mouse Testicular Cell Type-Specific Antiviral Response against Mumps Virus Replication. Frontiers in Immunology, 2017, 8, 117.	4.8	19
34	Analysis of the Protective Immunity Induced by Herpes Simplex Virus 1 Strain M3 with an Attenuated Phenotype Due to Mutations in the Viral ul7, ul41, and LAT Genes. Frontiers in Microbiology, 2017, 8, 1958.	3.5	6
35	A comparative study of multiple clinical enterovirus 71 isolates and evaluation of cross protection of inactivated vaccine strain FY-23ÂK-B in vitro. Virology Journal, 2017, 14, 206.	3.4	7
36	The Preferential Infection of Astrocytes by Enterovirus 71 Plays a Key Role in the Viral Neurogenic Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2016, 6, 192.	3.9	31

#	Article	IF	CITATIONS
37	HSV-1 tegument protein and the development of its genome editing technology. Virology Journal, 2016, 13, 108.	3.4	11
38	Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Scientific Reports, 2016, 6, 19507.	3.3	65
39	Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy. Scientific Reports, 2016, 6, 22303.	3.3	50
40	Mumps virus induces innate immune responses in mouse ovarian granulosa cells through the activation of Toll-like receptor 2 and retinoic acid-inducible gene I. Molecular and Cellular Endocrinology, 2016, 436, 183-194.	3.2	13
41	Phase 3 Trial of a Sabin Strain–Based Inactivated Poliovirus Vaccine. Journal of Infectious Diseases, 2016, 214, 1728-1734.	4.0	29
42	The mutated tegument protein UL7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of \hat{l} ±-4 gene transcription. Virology Journal, 2016, 13, 152.	3.4	40
43	Immunization against TGF- \hat{l}^21 reduces collagen deposition but increases sustained inflammation in a murine asthma model. Human Vaccines and Immunotherapeutics, 2016, 12, 1-10.	3.3	9
44	Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System. Journal of Virology, 2016, 90, 790-804.	3.4	49
45	Similar protective immunity induced by an inactivated enterovirus 71 (EV71) vaccine in neonatal rhesus macaques and children. Vaccine, 2015, 33, 6290-6297.	3.8	13
46	Immunity and clinical efficacy of an inactivated enterovirus 71 vaccine in healthy Chinese children: a report of further observations. BMC Medicine, 2015, 13, 226.	5.5	32
47	Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Particle and Fibre Toxicology, 2015, 12, 4.	6.2	44
48	Safety and immunogenicity of a live attenuated mumps vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 1382-1390.	3.3	17
49	HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140. Virology, 2014, 464-465, 1-10.	2.4	10
50	Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology, 2011, 412, 91-100.	2.4	67
51	Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICP0. Biochimie, 2010, 92, 1024-1030.	2.6	20
52	Development of Real-Time PCR Assays for the Quantitative Detection of CD81 Receptor Gene of Hepatitis C Virus in Tupaia Belangeri., 2009,,.		0
53	The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. Journal of Clinical Virology, 2005, 34, 133-139.	3.1	29
54	Induction of Hepatitis C Virus–Specific Humoral and Cellular Immune Responses in Mice and Rhesus by Artificial Multiple Epitopes Sequence. Viral Immunology, 2003, 16, 321-333.	1.3	8

QIHAN LI

#	Article	IF	CITATION
55	An SR-protein Induced by HSVI Binding to Cells Functioning as a Splicing Inhibitor of Viral pre-mRNA. Journal of Molecular Biology, 2002, 316, 887-894.	4.2	15
56	Characterization of the Immunologic Phenotype of Dendritic Cells Infected With Herpes Simplex Virus 1. Frontiers in Immunology, 0, 13, .	4.8	0