Pradeep G Siddheshwar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. International Journal of Non-Linear Mechanics, 2005, 40, 807-820.	2.6	211
2	Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source. International Journal of Heat and Mass Transfer, 2007, 50, 960-966.	4.8	145
3	Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. Journal of Fluid Mechanics, 2008, 594, 379-398.	3.4	82
4	Effects of thermal buoyancy and variable thermal conductivity on the MHD flow and heat transfer in a power-law fluid past a vertical stretching sheet in the presence of a non-uniform heat source. International Journal of Non-Linear Mechanics, 2009, 44, 1-12.	2.6	61
5	Steady Finite-Amplitude Rayleigh–Bénard Convection in Nanoliquids Using a Two-Phase Model: Theoretical Answer to the Phenomenon of Enhanced Heat Transfer. Journal of Heat Transfer, 2017, 139,	2.1	55
6	Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg–Landau model. International Journal of Non-Linear Mechanics, 2012, 47, 418-425.	2.6	52
7	THERMAL INSTABILITY OF A NANOFLUID SATURATING A ROTATING ANISOTROPIC POROUS MEDIUM. Special Topics and Reviews in Porous Media, 2011, 2, 53-64.	1.1	51
8	Unicellular unsteady Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids occupying enclosures : New findings. International Journal of Mechanical Sciences, 2017, 131-132, 1061-1072.	6.7	50
9	Chaotic convection in a ferrofluid. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 2436-2447.	3.3	49
10	Effect of a non-uniform basic temperature gradient on Rayleigh–Benard convection in a micropolar fluid. International Journal of Engineering Science, 1998, 36, 1183-1196.	5.0	46
11	A weak nonlinear stability analysis of double diffusive convection with cross-diffusion in a fluid-saturated porous medium. Heat and Mass Transfer, 1998, 33, 287-293.	2.1	45
12	Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries. Journal of Magnetism and Magnetic Materials, 1995, 149, 148-150.	2.3	44
13	Effect of temperature/gravity modulation on the onset of magneto-convection in electrically conducting fluids with internal angular momentum. Journal of Magnetism and Magnetic Materials, 2000, 219, 153-162.	2.3	39
14	Effect of time-periodic vertical oscillations of the Rayleigh–Bénard system on nonlinear convection in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1412-1418.	2.4	39
15	Magnetoconvection in a micropolar fluid. International Journal of Engineering Science, 1998, 36, 1173-1181.	5.0	38
16	Nonlinear Convection in Porous Media: A Review. Journal of Porous Media, 2003, 6, 1-32.	1.9	38
17	An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation. Transport in Porous Media, 2012, 91, 585-604.	2.6	36
18	Weakly Nonlinear Stability Analysis of Temperature/Gravity-Modulated Stationary Rayleigh–Bénard Convection in a Rotating Porous Medium. Transport in Porous Media, 2012, 92, 633-647.	2.6	36

#	Article	IF	CITATIONS
19	Amplitude Equation and Heat Transport for Rayleigh–Bénard Convection in Newtonian Liquids with Nanoparticles. International Journal of Applied and Computational Mathematics, 2017, 3, 271-292.	1.6	36
20	Effect of temperature/gravity modulation on the onset of magneto-convection in weak electrically conducting fluids with internal angular momentum. Journal of Magnetism and Magnetic Materials, 1999, 192, 159-176.	2.3	35
21	Magnetoconvection in fluids with suspended particles under 1g and \hat{l} 4g. Aerospace Science and Technology, 2002, 6, 105-114.	4.8	35
22	Effect of trigonometric sine, square and triangular wave-type time-periodic gravity-aligned oscillations on Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids. Meccanica, 2019, 54, 451-469.	2.0	35
23	Effect of time-periodic boundary temperatures/body force on Rayleigh–Benard convection in a ferromagnetic fluid. Acta Mechanica, 2003, 161, 131-150.	2.1	34
24	Darcy-Bénard convection of Newtonian liquids and Newtonian nanoliquids in cylindrical enclosures and cylindrical annuli. Physics of Fluids, 2019, 31, .	4.0	33
25	Effect of Rotation on Thermal Convection in an Anisotropic Porous Medium with Temperature-dependent Viscosity. Transport in Porous Media, 2010, 81, 73-87.	2.6	31
26	A Series Solution for the Ginzburg-Landau Equation with a Time-Periodic Coefficient. Applied Mathematics, 2010, 01, 542-554.	0.4	31
27	Nonlinear Rayleigh–Bénard Convection With Variable Heat Source. Journal of Heat Transfer, 2013, 135,	2.1	30
28	An analytical study of linear and non-linear convection in Boussinesq–Stokes suspensions. International Journal of Non-Linear Mechanics, 2004, 39, 165-172.	2.6	29
29	Rayleigh–Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. International Journal of Engineering Science, 2011, 49, 1078-1094.	5.0	29
30	Suction-induced magnetohydrodynamics of a viscoelastic fluid over a stretching surface within a porous medium. IMA Journal of Applied Mathematics, 2014, 79, 445-458.	1.6	29
31	Transient natural convection heat transfer in nanoliquid-saturated porous oblique cavity using thermal non-equilibrium model. International Journal of Mechanical Sciences, 2016, 114, 233-245.	6.7	29
32	Effects of Nonuniform Heating and Wall Conduction on Natural Convection in a Square Porous Cavity Using LTNE Model. Journal of Heat Transfer, 2017, 139, .	2.1	29
33	Transient free convective heat transfer in nanoliquid-saturated porous square cavity with a concentric solid insert and sinusoidal boundary condition. Superlattices and Microstructures, 2016, 100, 1006-1028.	3.1	28
34	Linear and Weakly Nonlinear Stability Analyses of Two-Dimensional, Steady Brinkman–Bénard Convection Using Local Thermal Non-equilibrium Model. Transport in Porous Media, 2017, 120, 605-631.	2.6	28
35	A comparative study of individual influences of suspended multiwalled carbon nanotubes and alumina nanoparticles on Rayleigh-Bénard convection in water. Physics of Fluids, 2018, 30, .	4.0	28
36	Synchronous and asynchronous boundary temperature modulations of Bénard–Darcy convection. International Journal of Non-Linear Mechanics, 2013, 49, 84-89.	2.6	27

PRADEEP G SIDDHESHWAR

#	Article	IF	CITATIONS
37	Nonlinear Thermal Instability in a Rotating Viscous Fluid Layer Under Temperature/Gravity Modulation. Journal of Heat Transfer, 2012, 134, .	2.1	26
38	Linear and nonlinear electroconvection under AC electric field. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 2883-2895.	3.3	26
39	Regulation of heat transfer in Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1579-1600.	3.6	25
40	Effects of Time-Periodic Thermal Boundary Conditions and Internal Heating on Heat Transport in a Porous Medium. Transport in Porous Media, 2013, 97, 185-200.	2.6	24
41	Study of Heat Transport in a Porous Medium Under G-jitter and Internal Heating Effects. Transport in Porous Media, 2013, 96, 21-37.	2.6	24
42	Heat Transport in an Anisotropic Porous Medium Saturated with Variable Viscosity Liquid Under G-jitter and Internal Heating Effects. Transport in Porous Media, 2013, 99, 359-376.	2.6	23
43	A Theoretical Study of Natural Convection of Water-Based Nanoliquids in Low-Porosity Enclosures Using Single-Phase Model. Journal of Nanofluids, 2018, 7, 163-174.	2.7	23
44	Effect of Thermal Modulation on the Onset of Convection in a Viscoelastic Fluid Saturated Porous Layer. Transport in Porous Media, 2006, 62, 55-79.	2.6	22
45	Unsteady convective diffusion with heterogeneous chemical reaction in a plane-Poiseuille flow of a micropolar fluid. International Journal of Engineering Science, 2000, 38, 765-783.	5.0	21
46	OSCILLATORY CONVECTION IN VISCOELASTIC, FERROMAGNETIC/DIELECTRIC LIQUIDS. International Journal of Modern Physics B, 2002, 16, 2629-2635.	2.0	21
47	Linear and non-linear analyses of convection in a micropolar fluid occupying a porous medium. International Journal of Non-Linear Mechanics, 2003, 38, 1561-1579.	2.6	21
48	Linear and nonlinear stability analysis of binary viscoelastic fluid convection. Applied Mathematical Modelling, 2013, 37, 8162-8178.	4.2	20
49	Surface tension driven convection in viscoelastic liquids with thermorheological effect. International Communications in Heat and Mass Transfer, 2011, 38, 468-473.	5.6	19
50	Effect of internal-heating on weakly non-linear stability analysis of Rayleigh–Bénard convection under g-jitter. International Journal of Non-Linear Mechanics, 2013, 54, 35-42.	2.6	19
51	A Study of Unsteady, Unicellular Rayleigh-Bénard Convection of Nanoliquids in Enclosures Using Additional Modes. Journal of Nanofluids, 2018, 7, 791-800.	2.7	19
52	Suction-injection effects on the onset of Rayleigh-B�nard-Marangoni convection in a fluid with suspended particles. Acta Mechanica, 2001, 152, 241-252.	2.1	18
53	Optimal Subparametric Finite Elements for Elliptic Partial Differential Equations Using Higher-Order Curved Triangular Elements. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 83-100.	2.1	18
54	Comparison of the effects of three types of time-periodic body force on linear and non-linear stability of convection in nanoliquids. European Journal of Mechanics, B/Fluids, 2019, 77, 221-229.	2.5	18

#	Article	IF	CITATIONS
55	Unsteady Finite Amplitude Convection of Water–Copper Nanoliquid in High-Porosity Enclosures. Journal of Heat Transfer, 2019, 141, .	2.1	18
56	A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries. European Physical Journal: Special Topics, 2019, 228, 2511-2530.	2.6	17
57	Numerical solution of the momentum and heat transfer equations for a hydromagnetic flow due to a stretching sheet of a non-uniform property micropolar liquid. Applied Mathematics and Computation, 2011, 217, 5895-5909.	2.2	16
58	Unsteady non-linear convection in a second-order fluid. International Journal of Non-Linear Mechanics, 2002, 37, 321-330.	2.6	15
59	Study of rotating Bénard-Brinkman convection of Newtonian liquids and nanoliquids in enclosures. International Journal of Mechanical Sciences, 2020, 188, 105931.	6.7	14
60	Brinkman–Bénard convection in water with a dilute concentration of single-walled carbon nanotubes. European Journal of Mechanics, B/Fluids, 2020, 83, 175-189.	2.5	14
61	Küppers–Lortz Instability in the Rotating Brinkman–Bénard Problem. Transport in Porous Media, 2020, 132, 465-493.	2.6	14
62	A New Analytical Procedure for Solving the Non-Linear Differential Equation Arising in the Stretching Sheet Problem. International Journal of Applied Mechanics and Engineering, 2013, 18, 955-964.	0.7	13
63	A theoretical study of enhanced heat transfer in nanoliquids with volumetric heat source. Journal of Applied Mathematics and Computing, 2018, 57, 703-728.	2.5	13
64	Unsteady natural convection in a liquid-saturated porous enclosure with local thermal non-equilibrium effect. Meccanica, 2020, 55, 1763-1780.	2.0	13
65	Steady finite-amplitude Rayleigh–Bénard convection of ethylene glycol–copper nanoliquid in a high-porosity medium made of 30% glass fiber-reinforced polycarbonate. Journal of Thermal Analysis and Calorimetry, 2021, 143, 485-502.	3.6	13
66	A study of the natural convection of water-AA7075 nanoliquids in low-porosity cylindrical annuli using a local thermal non-equilibrium model. Physics of Fluids, 2021, 33, 032018.	4.0	13
67	Effect of non-uniform basic temperature gradient on the onset of Marangoni convection in a fluid with suspended particles. Aerospace Science and Technology, 2000, 4, 517-523.	4.8	12
68	Thermorheological effect on magnetoconvection in weak electrically conducting fluids under 1g or μg. Pramana - Journal of Physics, 2004, 62, 61-68.	1.8	12
69	On double-diffusive convection and cross diffusion effects on a horizontal wavy surface in a porous medium. Boundary Value Problems, 2012, 2012, 88.	0.7	12
70	Study of Heat Transport in Bénard-Darcy Convection with g-Jitter and Thermo-Mechanical Anisotropy in Variable Viscosity Liquids. Transport in Porous Media, 2012, 92, 277-288.	2.6	12
71	A study on the onset of thermally modulated Darcy–Bénard convection. Journal of Engineering Mathematics, 2016, 101, 175-188.	1.2	12
	Effects of second diffusing component and cross diffusion on primary and secondary		

Effects of second diffusing component and cross diffusion on primary and secondary thermoconvective instabilities in couple stress liquids. Applied Mathematics and Mechanics (English) Tj ETQq0 0 0 gBT /Overlack 10 Tf

#	Article	IF	CITATIONS
73	Küppers–Lortz instability in rotating Rayleigh–Bénard convection bounded by rigid/free isothermal boundaries. Applied Mathematics and Computation, 2020, 385, 125406.	2.2	12
74	The effect of boundary conditions on the onset of chaos in Rayleigh–Bénard convection using energy-conserving Lorenz models. Applied Mathematical Modelling, 2020, 88, 349-366.	4.2	12
75	Rayleighâ€Benard convection in a dielectric liquid: timeâ€periodic body force. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2100083-2100084.	0.2	11
76	Effects of variable viscosity and temperature modulation on linear Rayleigh-Bénard convection in Newtonian dielectric liquid. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1601-1614.	3.6	11
77	Study of Rayleigh–Bénard Convection of a Newtonian Nanoliquid in a High Porosity Medium Using Local Thermal Non-equilibrium Model. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	1.6	11
78	Rayleigh-Bénard convection in a newtonian liquid bounded by rigid isothermal boundaries. Applied Mathematics and Computation, 2020, 371, 124942.	2.2	11
79	Natural convection of water-copper nanoliquids confined in low-porosity cylindrical annuli. Chinese Journal of Physics, 2020, 68, 121-136.	3.9	11
80	Thermoconvective instability in a vertically oscillating horizontal ferrofluid layer with variable viscosity. Heat Transfer, 2020, 49, 4543-4564.	3.0	11
81	Linear and nonlinear triple diffusive convection in the presence of sinusoidal/non-sinusoidal gravity modulation: A comparative study. Mechanics Research Communications, 2021, 113, 103694.	1.8	11
82	A Local Nonlinear Stability Analysis of Modulated Double Diffusive Stationary Convection in a Couple Stress Liquid. Journal of Applied Fluid Mechanics, 2016, 9, 1255-1264.	0.2	11
83	Rayleigh-Benard convection in a viscoelastic fluid-filled high-porosity medium with nonuniform basic temperature gradient. International Journal of Mathematics and Mathematical Sciences, 2001, 25, 609-619.	0.7	10
84	A study of Darcy–Bénard regular and chaotic convection using a new local thermal non-equilibrium formulation. Physics of Fluids, 2021, 33, .	4.0	10
85	Effect of couple stresses on the unsteady convective diffusion in fluid flow through a channel. Biorheology, 1986, 23, 349-358.	0.4	9
86	MHD Flow Of Walters' Liquid B Over A Nonlinearly Stretching Sheet. International Journal of Applied Mechanics and Engineering, 2015, 20, 589-603.	0.7	9
87	Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 253-259.	1.5	9
88	Finite-amplitude ferro-convection and electro-convection in a rotating fluid. SN Applied Sciences, 2019, 1, 1.	2.9	9
89	Analytical Solution to the MHD Flow of Micropolar Fluid Over a Linear Stretching Sheet. International Journal of Applied Mechanics and Engineering, 2015, 20, 397-406.	0.7	8
90	Flow and Heat Transfer to a Newtonian Fluid Over Non-linear Extrusion Stretching Sheet. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	1.6	8

#	Article	IF	CITATIONS
91	A Study of Rayleigh-Bénard-Taylor Convection in Very-Shallow, Shallow, Square and Tall Enclosures. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	1.6	8
92	Effects of variable viscosity and rotation modulation on ferroconvection. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	8
93	Closed form solution for unsteady convective diffusion in a fluid-saturated sparsely packed porous medium. International Communications in Heat and Mass Transfer, 1987, 14, 137-145.	5.6	7
94	EFFECT OF INTERPHASE MASS TRANSFER ON UNSTEADY CONVECTIVE DIFFUSION:PART I, PLANE-POISEUELLE FLOW OF A POWER-LAW FLUID IN A CHANNEL. Chemical Engineering Communications, 2000, 180, 187-207.	2.6	7
95	A study on entropy generation and heat transfer in a magnetohydrodynamic flow of a coupleâ€stress fluid through a thermal nonequilibrium vertical porous channel. Heat Transfer, 2021, 50, 6377-6400.	3.0	7
96	Nonlinear Analysis of Effect of Rigid Body Rotation on Ferroconvection. Journal of Heat Transfer, 2020, 142, .	2.1	7
97	Flow and heat transfer of an exponential stretching sheet in a viscoelastic liquid with Navier slip boundary condition. Journal of Applied Fluid Mechanics, 2015, 8, 223-229.	0.2	7
98	Convection in a horizontal layer of water with three diffusing components. SN Applied Sciences, 2020, 2, 1.	2.9	6
99	Nonlinear analysis of the effect of viscoelasticity on ferroconvection. Heat Transfer, 2021, 50, 3861-3878.	3.0	6
100	Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field-dependent viscosity. European Physical Journal Plus, 2020, 135, 1.	2.6	6
101	Natural convection of a binary liquid in cylindrical porous annuli/rectangular porous enclosures with cross-diffusion effects under local thermal non-equilibrium state. International Journal of Heat and Mass Transfer, 2022, 184, 122294.	4.8	6
102	Study of Rayleigh–Bénard convection in a chemically reactive fluid using a generalized Lorenz model and the cubic–quintic Ginzburg–Landau equation. Physics of Fluids, 2022, 34, 023607.	4.0	6
103	Linear and weakly non-linear stability analyses of Rayleigh-Bénard convection in a water-saturated porous medium with different shapes of copper nanoparticles. European Physical Journal Plus, 2022, 137, .	2.6	6
104	Analytical Study of Turbulent Pollutant Dispersion near a Low Hill. Journal of Engineering Mechanics - ASCE, 2006, 132, 99-106.	2.9	5
105	Shooting Method for Good Estimates of the Eigenvalue in the Rayleigh-Be´nard-Marangoni Convection Problem With General Boundary Conditions on Velocity and Temperature. , 2009, , .		5
106	Lorenz and Ginzburg-Landau equations for thermal convection in a high-porosity medium with heat source. Ain Shams Engineering Journal, 2018, 9, 1547-1555.	6.1	5
107	Individual effects of sinusoidal and non-sinusoidal gravity modulation on Rayleigh-Bénard convection in a ferromagnetic liquid and in a nanoliquid with couple stress. European Physical Journal: Special Topics, 2021, 230, 1415-1425.	2.6	5
108	Linear and Global Stability Analyses on the Influences of Thermal Non-Equilibrium and Non-uniform Gravity Field on Darcy–Brinkman–Bénard Convection. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	5

#	Article	IF	CITATIONS
109	Study of Brinkman–BÃ nard nanofluid convection with idealistic and realistic boundary conditions and by considering the effects of shape of nanoparticles. Heat Transfer, 2021, 50, 3948-3976.	3.0	5
110	Forced Convective Flow of a Nanoliquid due to a Stretching Cylinder with Free Stream. Journal of Applied Fluid Mechanics, 2016, 9, 463-474.	0.2	5
111	On Dispersion of a Reactive Solute in a Pulsatile Flow of a Two-Fluid Model. Journal of Applied Fluid Mechanics, 2019, 12, 987-1000.	0.2	5
112	Flow and Heat Transfer in a Newtonian Liquid with Temperature Dependent Properties over an Exponential Stretching Sheet. Journal of Applied Fluid Mechanics, 2014, 7, .	0.2	5
113	EFFECT OF INTERPHASE MASS TRANSFER ON UNSTEADY CONVECTTVE DIFFUSION: PART II HAGEN POISEUILLE FLOW OF A POWER LAW FLUID IN A TUBE. Chemical Engineering Communications, 2000, 180, 209-229.	2.6	4
114	Effects of Suction and Freestream Velocity on a Hydromagnetic Stagnation-Point Flow and Heat Transport in a Newtonian Fluid Toward a Stretching Sheet. Journal of Heat Transfer, 2016, 138, .	2.1	4
115	Effect of rotation on Brinkman-Bénard convection of a Newtonian nanoliquid using local thermal non-equilibrium model. Thermal Science and Engineering Progress, 2021, 25, 100994.	2.7	4
116	Weakly nonlinear stability analysis of salt-finger convection in a longitudinally infinite cavity. Physics of Fluids, 2022, 34, .	4.0	4
117	Unsteady Convective Diffusion of Solute in a Micropolar Fluid Flow through a Cylindrical Tube. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1999, 79, 821-833.	1.6	3
118	Flow and Heat Transfer in a Newtonian Nanoliquid due to a Curved Stretching Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 833-842.	1.5	3
119	Natural Convection of Newtonian Liquids and Nanoliquids Confined in Low-Porosity Enclosures. Trends in Mathematics, 2019, , 255-263.	0.1	3
120	Effect of gravity modulation on linear, weakly-nonlinear and local-nonlinear stability analyses of stationary double-diffusive convection in a dielectric liquid. Meccanica, 2020, 55, 2003-2019.	2.0	3
121	Primary and secondary instabilities in Rayleigh-Bénard convection of water-copper nanoliquid. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105392.	3.3	3
122	On the differential transform method of solving boundary eigenvalue problems: An illustration. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000114.	1.6	3
123	Convective heat and mass transports and chaos in two-component systems: comparison of results of physically realistic boundary conditions with those of artificial ones. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3247-3266.	3.6	3
124	Effects of Variable Viscosity and Internal Heat Generation on Rayleigh–Bénard Convection in Newtonian Dielectric Liquid. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	3
125	Finite Element Solution of Darcy–Brinkman Equation for Irregular Cross-Section Flow Channel Using Curved Triangular Elements. Procedia Engineering, 2015, 127, 301-308.	1.2	2
126	OSCILLATORY CONVECTION IN VISCOELASTIC, FERROMAGNETIC/DIELECTRIC LIQUIDS. , 2002, , .		2

#	Article	IF	CITATIONS
127	Transforming Analytically Intractable Dynamical Systems with a Control Parameter into a Tractable Ginzburg-Landau Equation: Few Illustrations. The Nepali Mathematical Sciences Report, 2020, 35, 35-44.	0.1	2
128	Controlling Rayleigh–Bénard Magnetoconvection in Newtonian Nanoliquids by Rotational, Gravitational and Temperature Modulations: A Comparative Study. Arabian Journal for Science and Engineering, 2022, 47, 7837-7857.	3.0	2
129	A Comparative Study of Thermoconvective Flows of a Newtonian Fluid Over Three Horizontal Undulated Surfaces in a Porous Medium. Journal of Heat Transfer, 2022, 144, .	2.1	2
130	Rayleigh-Benard Convection With Second-Sound in a Viscoelastic Fluid-Filled High-Porosity Medium. , 2003, , 2509.		1
131	Energy Stability of Benard-Darcy Two-Component Convection of Maxwell Fluid. International Journal of Applied Mechanics and Engineering, 2013, 18, 125-135.	0.7	1
132	Oberbeck–Boussinesq free convection of water based nanoliquids in a vertical channel using Dirichlet, Neumann and Robin boundary conditions on temperature. AEJ - Alexandria Engineering Journal, 2016, 55, 2285-2297.	6.4	1
133	Boundary Layer Flow and Thermal Analysis of a Cu-Nanoliquid Past a Stretching Cylinder. International Journal of Applied and Computational Mathematics, 2017, 3, 2559-2572.	1.6	1
134	Optimal sub-parametric finite element approach for a Darcy-Brinkman fluid flow problem through a circular channel using curved triangular elements. IOP Conference Series: Materials Science and Engineering, 2018, 310, 012129.	0.6	1
135	Meromorphic solutions of nonlinear ordinary differential equations. Tbilisi Mathematical Journal, 2019, 12, .	0.3	1
136	Steady Finite-Amplitude Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid in a High-Porosity Medium. Trends in Mathematics, 2019, , 79-86.	0.1	1
137	Existence of Meromorphic Solution of Riccati-Abel Differential Equation. Trends in Mathematics, 2019, , 21-28.	0.1	1
138	Meromorphic solution of a class of non-linear differential equations with sharing one value. Journal of Analysis, 2020, 28, 415-430.	0.6	1
139	A New Series Solution Applicable to a Class of Boundary Layer Equations with Exponential Decay in Solution. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	1.6	1
140	Rayleigh–Bénard and Bénard–Marangoni magnetoconvection in variable viscosity finitely conducting liquids. Heat Transfer, 2021, 50, 5674-5696.	3.0	1
141	Effect of Non-inertial Acceleration on Brinkman–Bénard Convection in Water-Copper Nanoliquid-Saturated Porous Enclosures. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	1
142	Study of Steady, Two-Dimensional, Unicellular Convection in a Water-Copper Nanoliquid-Saturated Porous Enclosure Using Single-Phase Model. Trends in Mathematics, 2019, , 147-155.	0.1	1
143	Solution of the Lorenz Model with Help from the Corresponding Ginzburg-Landau Model. Trends in Mathematics, 2019, , 47-55.	0.1	1
144	MHD Flow and Heat Transfer of an Exponential Stretching Sheet in a Boussinesq-Stokes Suspension. Journal of Applied Fluid Mechanics, 2014, 7, .	0.2	1

#	Article	IF	CITATIONS
145	Dispersion in a Non-Linear Non-Darcy Flow of a Variable Viscosity Liquid. Mapana Journal of Sciences, 2012, 11, 113-127.	0.1	1
146	Study of Rayleigh-Bénard Convection of a Newtonian Nanoliquid in a Porous Medium Using General Boundary Conditions. Lecture Notes in Mechanical Engineering, 2021, , 121-134.	0.4	1
147	Linear and non-linear stability analyses of Rayleigh-Bénard convection in water–copper and water–alloy nanoliquids. International Journal of Ambient Energy, 2022, 43, 7229-7236.	2.5	1
148	Effect of couple-stress on the ultrafiltration process. , 0, , .		0
149	An Analytical Study of Weakly Nonlinear Dynamics of a Walters' Liquid B around a Flexible Sheet Undergoing Super Linear Stretching. ISRN Applied Mathematics, 2012, 2012, 1-13.	0.5	0
150	Mixed convection nanofluid flow in a vertical channel with boundary conditions of the third kind. AIP Conference Proceedings, 2015, , .	0.4	0
151	Reduction of a Tri-Modal Lorenz Model of Ferrofluid Convection to a Cubic–Quintic Ginzburg–Landau Equation Using the Center Manifold Theorem. Differential Equations and Dynamical Systems, 2024, 32, 151-169.	1.0	0
152	Study of Natural Convection with Local Thermal Non Equilibrium Effects in Nanoliquid-Saturated Low Porosity Enclosures. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	1.6	0