Zhibin Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669603/publications.pdf

Version: 2024-02-01

23 1,240 13 23 23 papers citations h-index g-index

23 23 23 23 1902

23 23 1902 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Elastic Sandwichâ€Type rGO–VS ₂ /S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium–Sulfur Batteries with High Energy Density. Advanced Energy Materials, 2018, 8, 1702337.	19.5	227
2	Separator Modified by Cobaltâ€Embedded Carbon Nanosheets Enabling Chemisorption and Catalytic Effects of Polysulfides for Highâ€Energyâ€Density Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901609.	19.5	158
3	Porous Organic Polymers for Polysulfide Trapping in Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707597.	14.9	154
4	Engineered Interfusion of Hollow Nitrogenâ€Doped Carbon Nanospheres for Improving Electrochemical Behavior and Energy Density of Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1902322.	14.9	125
5	Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries. Energy Storage Materials, 2018, 12, 252-259.	18.0	117
6	Metallic MoS ₂ Nanoflowers Decorated Graphene Nanosheet Catalytically Boosts the Volumetric Capacity and Cycle Life of Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003718.	19.5	105
7	The Fusion of Imidazoliumâ€Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatomâ€Doped Carbon Precursors for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1703936.	14.9	98
8	High sulfur content and volumetric capacity promised by a compact freestanding cathode for high-performance lithium–sulfur batteries. Energy Storage Materials, 2020, 27, 435-442.	18.0	39
9	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954.	13.8	38
10	Electrostatic trapping of polysulfides enabled by imidazolium-based ionic polymers for high-energy-density lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7375-7381.	10.3	30
11	Pore-space-partitioned MOF separator promotes high-sulfur-loading Li–S batteries with intensified rate capability and cycling life. Journal of Materials Chemistry A, 2021, 9, 26929-26938.	10.3	27
12	Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium–Sulfur Batteries with High Areal Capacities. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8032-8039.	8.0	24
13	Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium–sulphur batteries with a low electrolyte/sulphur ratio. Journal of Materials Chemistry A, 2020, 8, 21824-21832.	10.3	22
14	Ammonia-free fabrication of ultrafine vanadium nitride nanoparticles as interfacial mediators for promoting electrochemical behaviors of lithium–sulfur batteries. Nanoscale, 2021, 13, 5292-5299.	5.6	15
15	Mitigation of vacancy with ammonium salt-trapped ZIF-8 capsules for stable perovskite solar cells through simultaneous compensation and loss inhibition. Nanoscale Advances, 2021, 3, 3554-3562.	4.6	13
16	Multifunctional anionic metal-organic frameworks enhancing stability of perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133587.	12.7	11
17	Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions. Nano Research, 2022, 15, 8091-8100.	10.4	10
18	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie, 2021, 133, 13059-13064.	2.0	7

#	Article	IF	CITATIONS
19	Structural Isomerization in Cu(I) Clusters: Tracing the Cu Thermal Migration Paths and Unveiling the Structure-Dependent Photoluminescence. CCS Chemistry, 2023, 5, 350-360.	7.8	7
20	Lithium Sulfur Batteries: Elastic Sandwich-Type rGO-VS2 /S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870046.	19.5	6
21	Lithium–Sulfur Batteries: Metallic MoS ₂ Nanoflowers Decorated Graphene Nanosheet Catalytically Boosts the Volumetric Capacity and Cycle Life of Lithium–Sulfur Batteries (Adv. Energy) Tj ETQq1 I	1 097.8431	4 4 gBT/Ove
22	Mixing halogens improves the passivation effects of amine halide on perovskite. Electrochimica Acta, 2022, 405, 139782.	5.2	2
23	Lithium–Sulfur Batteries: The Fusion of Imidazoliumâ€Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatomâ€Doped Carbon Precursors for Highâ€Performance Lithium–Sulfur Batteries (Adv. Funct. Mater. 44/2017). Advanced Functional Materials, 2017, 27, .	14.9	1