Tetsuro Shinoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/666947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Developmental Biology, 2009, 325, 341-350.	2.0	299
2	Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11986-11991.	7.1	293
3	Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11729-11734.	7.1	282
4	Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Developmental Biology, 2006, 298, 555-570.	2.0	274
5	Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochemistry and Molecular Biology, 2004, 34, 991-1010.	2.7	263
6	Molecular basis of juvenile hormone signaling. Current Opinion in Insect Science, 2015, 11, 39-46.	4.4	193
7	Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways. PLoS ONE, 2008, 3, e3048.	2.5	187
8	Juvenile Hormone Prevents Ecdysteroid-Induced Expression of Broad Complex RNAs in the Epidermis of the Tobacco Hornworm,Manduca sexta. Developmental Biology, 1998, 203, 233-244.	2.0	177
9	<i>Non-molting glossy</i> / <i>shroud</i> encodes a short-chain dehydrogenase/reductase that functions in the â€~Black Box' of the ecdysteroid biosynthesis pathway. Development (Cambridge), 2010, 137, 1991-1999.	2.5	163
10	RNAiâ€mediated knockdown of <i>juvenile hormone acid Oâ€methyltransferase</i> gene causes precocious metamorphosis in the red flour beetle <i>Tribolium castaneum</i> . FEBS Journal, 2008, 275, 2919-2931.	4.7	160
11	Control of juvenile hormone biosynthesis in Bombyx mori: Cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochemistry and Molecular Biology, 2007, 37, 808-818.	2.7	141
12	Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori. PLoS Genetics, 2012, 8, e1002486.	3.5	135
13	UDP-Glycosyltransferases from the UGT73C Subfamily in <i>Barbarea vulgaris</i> Catalyze Sapogenin 3- <i>O</i> -Glucosylation in Saponin-Mediated Insect Resistance Â. Plant Physiology, 2012, 160, 1881-1895.	4.8	134
14	Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2008, 38, 714-720.	2.7	127
15	Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens. Peptides, 2014, 53, 125-133.	2.4	127
16	Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval–adult metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1057-1062.	7.1	115
17	Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. Journal of Chemical Ecology, 2002, 28, 587-599.	1.8	111
18	Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4226-35.	7.1	110

TETSURO SHINODA

#	Article	IF	CITATIONS
19	Krüppel Homolog 1 Inhibits Insect Metamorphosis via Direct Transcriptional Repression of Broad-Complex, a Pupal Specifier Gene. Journal of Biological Chemistry, 2016, 291, 1751-1762.	3.4	107
20	Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Developmental Biology, 2014, 390, 221-230.	2.0	100
21	Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex. Journal of Insect Physiology, 2015, 80, 22-30.	2.0	96
22	Regulation of the Transcription Factor E75 by 20-Hydroxyecdysone and Juvenile Hormone in the Epidermis of the Tobacco Hornworm,Manduca sexta,during Larval Molting and Metamorphosis. Developmental Biology, 1998, 193, 127-138.	2.0	87
23	Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Developmental Biology, 2014, 388, 48-56.	2.0	74
24	Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Scientific Reports, 2013, 3, 1570.	3.3	68
25	Resistance in the Plant, Barbarea vulgaris, and Counter-Adaptations in Flea Beetles Mediated by Saponins. Journal of Chemical Ecology, 2010, 36, 277-285.	1.8	67
26	The role of 20-hydroxyecdysone and juvenile hormone in pupal commitment of the epidermis of the silkworm, Bombyx mori. Mechanisms of Development, 2008, 125, 411-420.	1.7	65
27	The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development. Insect Biochemistry and Molecular Biology, 2015, 61, 1-7.	2.7	63
28	Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene. Insect Biochemistry and Molecular Biology, 2001, 31, 521-532.	2.7	56
29	A Role for Taiman in Insect Metamorphosis. PLoS Genetics, 2014, 10, e1004769.	3.5	56
30	Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes. Insect Biochemistry and Molecular Biology, 2009, 39, 31-37.	2.7	55
31	Identification of the Bombyx Red Egg Gene Reveals Involvement of a Novel Transporter Family Gene in Late Steps of the Insect Ommochrome Biosynthesis Pathway. Journal of Biological Chemistry, 2012, 287, 17706-17714.	3.4	55
32	Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Insect Biochemistry and Molecular Biology, 2010, 40, 331-338.	2.7	48
33	Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnology and Applied Biochemistry, 2013, 60, 82-91.	3.1	48
34	Characterization and DNA-binding properties of GRF, a novel monomeric binding orphan receptor related to GCNF and betaFTZ-F1. FEBS Journal, 1999, 266, 181-190.	0.2	43
35	Spatial expression of the mevalonate enzymes involved in juvenile hormone biosynthesis in the corpora allata in Bombyx mori. Journal of Insect Physiology, 2009, 55, 798-804.	2.0	40
36	Determination by LC-MS of Juvenile Hormone Titers in Hemolymph of the Silkworm, <i>Bombyx mori</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 988-991.	1.3	36

#	Article	IF	CITATIONS
37	Cyanoprotein: Developmental stage, sex and diapause-dependent expression, and synthesis regulation by juvenile hormone in the bean bug,Riptortus clavatus. Archives of Insect Biochemistry and Physiology, 1992, 20, 61-73.	1.5	33
38	Two hexameric cyanoprotein subunits from an insect, Riptortus clavatus . Sequence, phylogeny and developmental and juvenile hormone regulation. FEBS Journal, 1998, 258, 929-940.	0.2	33
39	Characterization of Juvenile Hormone Epoxide Hydrolase and Related Genes in the Larval Development of the Silkworm <i>Bombyx mori</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 1421-1429.	1.3	33
40	The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier. PLoS Genetics, 2015, 11, e1005712.	3.5	32
41	Expression of mRNA for the t-complex polypeptide–1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress and Chaperones, 2005, 10, 204.	2.9	32
42	Molecular characterization and functional analysis of novel carboxyl/cholinesterases with GQSAG motif in the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2010, 40, 100-112.	2.7	29
43	Functional characterization of two paralogous JH receptors, methoprene-tolerant 1 and 2, in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Applied Entomology and Zoology, 2015, 50, 383-391.	1.2	29
44	Bombyx mori orphan receptor, BmHR78: cDNA cloning, testis abundant expression and putative dimerization partner for Bombyx ultraspiracle. Molecular and Cellular Endocrinology, 2002, 189, 201-211.	3.2	27
45	Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. Journal of Insect Physiology, 2015, 80, 61-70.	2.0	27
46	Identification and cDNA cloning of novel juvenile hormone responsive genes from fat body of the bean bug, Riptortus clavatus by mRNA differential display. Insect Biochemistry and Molecular Biology, 1998, 28, 181-189.	2.7	26
47	Reinvestigation of the Sex Pheromone of the Wild Silkmoth Bombyx mandarina: The Effects of Bombykal and Bombykyl Acetate. Journal of Chemical Ecology, 2012, 38, 1031-1035.	1.8	26
48	Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris. Developmental and Comparative Immunology, 2019, 99, 103399.	2.3	25
49	Cyanoprotein: Quantitative changes and synthesis in diapause and juvenile hormone analog treated bean bug, Riptortus clavatus. Insect Biochemistry, 1991, 21, 553-562.	1.8	23
50	Quantitative changes and synthesis of cyanoprotein in whole body and tissues during development of the bean bug, Riptortus clavatus. Insect Biochemistry, 1991, 21, 313-320.	1.8	22
51	Enantioselective separation of racemic juvenile hormone III by normal-phase high-performance liquid chromatography and preparation of [2H3]juvenile hormone III as an internal standard for liquid chromatography–mass spectrometry quantification. Journal of Chromatography A, 2007, 1161, 252-260.	3.7	22
52	Genome-wide Identification of Tebufenozide Resistant Genes in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Scientific Reports, 2019, 9, 4203.	3.3	22
53	Misdirection of dosage compensation underlies bidirectional sex-specific death in Wolbachia-infected Ostrinia scapulalis. Insect Biochemistry and Molecular Biology, 2015, 66, 72-76.	2.7	21
54	Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2017, 87, 14-25.	2.7	21

TETSURO SHINODA

#	Article	IF	CITATIONS
55	Identification of a Novel Strong and Ubiquitous Promoter/Enhancer in the Silkworm <i>Bombyx mori</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1347-1357.	1.8	18
56	Identification of allatostatins in the brown-winged green bug Plautia stali. Journal of Insect Physiology, 2017, 96, 21-28.	2.0	18
57	Cyanoprotein: Immunological properties and content changes during the development of non-diapause female bean bugs, Riptortus clavatus. Insect Biochemistry, 1991, 21, 223-231.	1.8	16
58	Identification of a juvenile-hormone signaling inhibitor via high-throughput screening of a chemical library. Scientific Reports, 2020, 10, 18413.	3.3	15
59	Methoprene-tolerant is essential for embryonic development of the red flour beetle Tribolium castaneum. Journal of Insect Physiology, 2020, 121, 104017.	2.0	13
60	Juvenile Hormone Biosynthetic Enzymes as Targets for Insecticide Discovery. , 2013, , 31-55.		11
61	Remodeling of the corpora cardiaca and the corpora allata during adult metamorphosis in Bombyx mori: identification of invisible corpora cardiaca by the expression of adipokinetic hormone. Applied Entomology and Zoology, 2011, 46, 87-93.	1.2	9
62	A virus carries a gene encoding juvenile hormone acid methyltransferase, a key regulatory enzyme in insect metamorphosis. Scientific Reports, 2017, 7, 13522.	3.3	9
63	Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2020, 126, 103450.	2.7	9
64	Genomeâ€wide assessment and development of molecular diagnostic methods for imidaclopridâ€resistance in the brown planthopper, <scp><i>Nilaparvata lugens</i></scp> (Hemiptera;) Tj ETQo	ן00304rgB	T /Owerlock 10
65	Tebufenozide resistance in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae): establishment of a molecular diagnostic method based on EcR mutation and its application for field-monitoring. Applied Entomology and Zoology, 2019, 54, 223-230.	1.2	6
66	The Number of Larval Molts Is Controlled by Hox in Caterpillars. Current Biology, 2021, 31, 884-891.e3.	3.9	6
67	Occurrence of a feeding deterrent in Barbarea vulgaris (Brassicales: Brassicaceae), a crucifer unacceptable to the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) Applied Entomology and Zoology, 2001, 36, 465-470.	1.2	5
68	Identification of novel genes expressed highly and selectively in the corpora allata of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Applied Entomology and Zoology, 2020, 55, 45-54.	1.2	5
69	A mitochondrial phosphatase PTPMT1 is essential for the early development of silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 2020, 530, 713-718.	2.1	5
70	Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori. Journal of Insect Physiology, 2015, 80, 31-41.	2.0	3
71	Oviposition and larval feeding habits of the pea blue, Lampides boeticus L. (Lepidoptera:lycaenidae) on the lablab bean, Dolichos lablab L Japanese Journal of Applied Entomology and Zoology, 1985, 29, 26-30.	0.1	2
72	Development of a cell-based assay for ecdysteroid quantification using an early ecdysteroid-inducible gene promoter. Applied Entomology and Zoology, 2014, 49, 443-452.	1.2	2

TETSURO SHINODA

#	Article	IF	CITATIONS
73	Methyl Farnesoate. , 2016, , 566-e100-3.		2
74	Characterization and Analysis of Novel Carboxyl/Cholinesterase Genes Possessing the Thr-316 Motif in the Silkworm,Bombyx mori. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2259-2266.	1.3	1
75	Development of allele-specific loop-mediated isothermal amplification (AS-LAMP) to detect the tebufenozide-resistant allele in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Applied Entomology and Zoology, 0, , 1.	1.2	1
76	Message from the Chief Editor. Applied Entomology and Zoology, 2011, 46, 1-1.	1.2	0
77	Juvenile hormone related genes as targets for developing biorational insecticides. Japanese Journal of Pesticide Science, 2015, 40, 58-67.	0.0	Ο
78	Methyl farnesoate. , 2021, , 991-992.		0