Hao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669196/publications.pdf

Version: 2024-02-01

26 papers 4,300 citations

331259 21 h-index 26 g-index

26 all docs

26 docs citations

26 times ranked 4554 citing authors

#	Article	IF	CITATIONS
1	Metal Nanoclusters/Polyvinyl Alcohol Composite Films as the Alternatives for Fabricating Remote-Type White Light-Emitting Diodes. Nanomaterials, 2022, 12, 204.	1.9	5
2	Unravelling the synergy of oxygen vacancies and gold nanostars in hematite for the electrochemical and photoelectrochemical oxygen evolution reaction. Nano Energy, 2022, 94, 106968.	8.2	33
3	A Selfâ€Reconstructed Bifunctional Electrocatalyst of Pseudoâ€Amorphous Nickel Carbide @ Iron Oxide Network for Seawater Splitting. Advanced Science, 2022, 9, e2200146.	5.6	35
4	Using Metal Cation to Control the Microstructure of Cobalt Oxide in Energy Conversion and Storage Applications. Small, 2022, 18, e2106391.	5.2	14
5	Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. Journal of Alloys and Compounds, 2022, 922, 166113.	2.8	66
6	Pd Ionâ€Exchange and Ammonia Etching of a Prussian Blue Analogue to Produce a Highâ€Performance Waterâ€Splitting Catalyst. Advanced Functional Materials, 2021, 31, 2008989.	7.8	65
7	The substituents on the intermediate electron-deficient groups in small molecular acceptors result appropriate morphologies for organic solar cells. Organic Electronics, 2021, 93, 106133.	1.4	8
8	Anodic Transformation of a Coreâ€Shell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2106835.	7.8	47
9	Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites. Materials Horizons, 2020, 7, 2719-2725.	6.4	38
10	Ideal alloys of two donor isomers with non-covalently conformational locking for ternary organic solar cells. Journal of Materials Chemistry C, 2020, 8, 7519-7526.	2.7	11
11	Modulating the molecular packing and distribution enables fullerene-free ternary organic solar cells with high efficiency and long shelf-life. Journal of Materials Chemistry A, 2019, 7, 20139-20150.	5.2	38
12	Engineering the Photoluminescence of CsPbX $<$ sub $>$ 3 $<$ /sub $>$ (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm. ACS Applied Materials & amp; Interfaces, 2019, 11, 14256-14265.	4.0	66
13	Inorganic CsPbI ₂ Br Perovskite Solar Cells: The Progress and Perspective. Solar Rrl, 2019, 3, 1800239.	3.1	217
14	Non-fullerene acceptors for large-open-circuit-voltage and high-efficiency organic solar cells. Materials Today Nano, 2018, 1, 47-59.	2.3	10
15	Critical Role of Molecular Electrostatic Potential on Charge Generation in Organic Solar Cells. Chinese Journal of Chemistry, 2018, 36, 491-494.	2.6	163
16	Polymerâ€Passivated Inorganic Cesium Lead Mixedâ€Halide Perovskites for Stable and Efficient Solar Cells with High Openâ€Circuit Voltage over 1.3 V. Advanced Materials, 2018, 30, 1705393.	11.1	401
17	Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Smallâ€Molecule Acceptors. Advanced Materials, 2018, 30, e1800613.	11.1	623
18	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ€Narrow Band Gap. Angewandte Chemie, 2017, 129, 3091-3095.	1.6	61

#	Article	IF	CITATION
19	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ∈Narrow Band Gap. Angewandte Chemie - International Edition, 2017, 56, 3045-3049.	7.2	711
20	Potential of Nonfullerene Small Molecules with High Photovoltaic Performance. Chemistry - an Asian Journal, 2017, 12, 2160-2171.	1.7	45
21	Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Openâ€Circuit Voltage. Advanced Materials, 2017, 29, 1700254.	11.1	363
22	Aqueousâ€Processed Polymer/Nanocrystals Hybrid Solar Cells: The Effects of Chlorine on the Synthesis of CdTe Nanocrystals, Crystal Growth, Defect Passivation, Photocarrier Dynamics, and Device Performance. Solar Rrl, 2017, 1, 1600020.	3.1	24
23	Improved Domain Size and Purity Enables Efficient Allâ€Smallâ€Molecule Ternary Solar Cells. Advanced Materials, 2017, 29, 1703777.	11.1	94
24	A Wide Bandgap Polymer with Strong π–π Interaction for Efficient Fullereneâ€Free Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600742.	10.2	76
25	Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. Journal of Materials Chemistry A, 2016, 4, 18043-18049.	5.2	88
26	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998