Ute C Vothknecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany, 2012, 63, 1525-1542.	4.8	296
2	VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4238-4242.	7.1	295
3	A Euryarchaeal Lysyl-tRNA Synthetase: Resemblance to Class I Synthetases. Science, 1997, 278, 1119-1122.	12.6	197
4	Vipp1 deletion mutant of Synechocystis: A connection between bacterial phage shock and thylakoid biogenesis?. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4243-4248.	7.1	178
5	Biogenesis and origin of thylakoid membranes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1541, 91-101.	4.1	161
6	Essential Role of VIPP1 in Chloroplast Envelope Maintenance in <i>Arabidopsis</i> Â. Plant Cell, 2012, 24, 3695-3707.	6.6	107
7	Vipp1: a very important protein in plastids?!. Journal of Experimental Botany, 2012, 63, 1699-1712.	4.8	97
8	Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16051-16056.	7.1	95
9	Complex Formation of Vipp1 Depends on Its α-Helical PspA-like Domain. Journal of Biological Chemistry, 2004, 279, 35535-35541.	3.4	93
10	A vesicle transport system inside chloroplasts. FEBS Letters, 2001, 506, 257-261.	2.8	91
11	Barley glutamyl tRNAGlu reductase: Mutations affecting haem inhibition and enzyme activity. Phytochemistry, 1998, 47, 513-519.	2.9	89
12	One Polypeptide with Two Aminoacyl-tRNA Synthetase Activities. Science, 2000, 287, 479-482.	12.6	76
13	A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. Journal of Experimental Botany, 2012, 63, 1751-1761.	4.8	76
14	Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiology and Biochemistry, 2007, 45, 119-128.	5.8	73
15	Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Molecular Genetics and Genomics, 1997, 254, 85-92.	2.4	72
16	The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. Plant Molecular Biology, 2012, 78, 211-222.	3.9	70
17	Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9287-9291.	7.1	68
18	Chloroplast-derived photo-oxidative stress causes changes in H2O2 and <i>E</i> GSH in other subcellular compartments. Plant Physiology, 2021, 186, 125-141.	4.8	65

Ите С Vотнклеснт

#	Article	IF	CITATIONS
19	Calcium regulation of chloroplast protein import. Plant Journal, 2005, 42, 821-831.	5.7	61
20	The role of calcium in chloroplasts—an intriguing and unresolved puzzle. Protoplasma, 2012, 249, 957-966.	2.1	61
21	Chloroplast-localized protein kinases: a step forward towards a complete inventory. Journal of Experimental Botany, 2012, 63, 1713-1723.	4.8	60
22	A Protein Kinase Family in Arabidopsis Phosphorylates Chloroplast Precursor Proteins. Journal of Biological Chemistry, 2006, 281, 40216-40223.	3.4	59
23	A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nature Plants, 2019, 5, 581-588.	9.3	56
24	The first α-helical domain of the vesicle-inducing protein in plastids 1 promotes oligomerization and lipid binding. Planta, 2013, 237, 529-540.	3.2	54
25	Arabidopsis calcium-binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP-import and plastid SAM-import. FEBS Letters, 2011, 585, 3935-3940.	2.8	53
26	Evolution of Chloroplast Vesicle Transport. Plant and Cell Physiology, 2003, 44, 217-222.	3.1	48
27	Chloroplast membrane transport: Interplay of prokaryotic and eukaryotic traits. Gene, 2005, 354, 99-109.	2.2	48
28	Organellar calcium signaling in plants: An update. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118948.	4.1	48
29	Cross-talk between calcium signalling and protein phosphorylation at the thylakoid. Journal of Experimental Botany, 2012, 63, 1725-1733.	4.8	46
30	Dissecting stimulus-specific Ca ²⁺ signals in amyloplasts and chloroplasts of <i>Arabidopsis thaliana</i> cell suspension cultures. Journal of Experimental Botany, 2016, 67, 3965-3974.	4.8	45
31	Phosphorylation of <i>Arabidopsis</i> transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochemical Journal, 2014, 458, 313-322.	3.7	44
32	Programmed cell death in <i>Ricinus</i> and <i>Arabidopsis</i> : the function of KDEL cysteine peptidases in development. Physiologia Plantarum, 2012, 145, 103-113.	5.2	41
33	Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma. Genetics, 1999, 152, 1269-1276.	2.9	40
34	Sequence Divergence of Seryl-tRNA Synthetases in Archaea. Journal of Bacteriology, 1998, 180, 6446-6449.	2.2	40
35	Chloroplast Ca ²⁺ Fluxes into and across Thylakoids Revealed by Thylakoid-Targeted Aequorin Probes. Plant Physiology, 2018, 177, 38-51.	4.8	36
36	<i>Arabidopsis</i> ATPase family gene 1â€like protein 1 is a calmodulinâ€binding AAA ⁺ â€ATPase with a dual localization in chloroplasts and mitochondria. FERS Journal, 2009, 276, 3870-3880	4.7	35

Ите С Vотнклеснт

#	Article	IF	CITATIONS
37	Protein Import: the Hitchhikers Guide into Chloroplasts. Biological Chemistry, 2000, 381, 887-97.	2.5	28
38	Arabidopsis OBG-Like GTPase (AtOBGL) Is Localized in Chloroplasts and Has an Essential Function in Embryo Development. Molecular Plant, 2009, 2, 1373-1383.	8.3	28
39	Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis. FEBS Letters, 1999, 462, 302-306.	2.8	27
40	The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence. Journal of Experimental Botany, 2016, 67, 3985-3996.	4.8	27
41	Calcium depletion and calmodulin inhibition affect the import of nuclearâ€encoded proteins into plant mitochondria. Plant Journal, 2009, 58, 694-705.	5.7	25
42	In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca2+-effects. BMC Plant Biology, 2015, 15, 238.	3.6	25
43	Calmodulin-like protein AtCML3 mediates dimerization of peroxisomal processing protease AtDEG15 and contributes to normal peroxisome metabolism. Plant Molecular Biology, 2013, 83, 607-624.	3.9	23
44	The High Light Response in Arabidopsis Requires the Calcium Sensor Protein CAS, a Target of STN7- and STN8-Mediated Phosphorylation. Frontiers in Plant Science, 2019, 10, 974.	3.6	23
45	Identification of CP12 as a Novel Calcium-Binding Protein in Chloroplasts. Plants, 2013, 2, 530-540.	3.5	19
46	A novel Ca2+-binding protein influences photosynthetic electron transport in Anabaena sp. PCC 7120. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 519-532.	1.0	12
47	Structural basis for the magnesium-dependent activation of transketolase from Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2132-2145.	2.4	11
48	Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion, 2020, 53, 224-233.	3.4	10
49	Structural genes for Mg-chelatase subunits in barley:. Molecular Genetics and Genomics, 1996, 250, 383.	2.4	10
50	TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana. Molecular Plant, 2017, 10, 575-589.	8.3	9
51	Calcium regulation in endosymbiotic organelles of plants. Plant Signaling and Behavior, 2009, 4, 805-808.	2.4	8
52	Phenylalanyl-tRNA synthetase from the archaeon Methanobacterium thermoautotrophicum is an (αβ)2 heterotetrameric protein. Biochimie, 1999, 81, 1037-1039.	2.6	7
53	The endosymbiotic origin of organelles: an ancient process still very much in fashion. Biological Chemistry, 2007, 388, 877-877.	2.5	5
54	Protein Import Into Chloroplasts: Who, When, and How?. Advances in Photosynthesis and Respiration, 2007, , 53-74.	1.0	5

Ите С Vотнклеснт

#	Article	IF	CITATIONS
55	Monitoring calcium handling by the plant endoplasmic reticulum with a low a ²⁺ â€affinity targeted aequorin reporter. Plant Journal, 2022, 109, 1014-1027.	5.7	5
56	Chloroplast quest: A journey from the cytosol into the chloroplast and beyond. , 2002, 145, 181-222.		4
57	Purification and partial characterization of a glutamyl-tRNA synthetase from the unicellular green algaScenedesmus obliquus, mutant C-2A?. Planta, 1994, 192, 256-260.	3.2	3
58	The Lattice-Like Structure Observed by Vipp1-GFP in Arabidopsis Chloroplasts. Advanced Topics in Science and Technology in China, 2013, , 394-397.	0.1	0
59	Protein Import Into Chloroplasts: Who, When, and How?. , 2007, , 53-74.		0