
Jean-Luc Duvail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intense Raman D Band without Disorder in Flattened Carbon Nanotubes. ACS Nano, 2021, 15, 596-603.	7.3	44
2	Exploiting Light Interferences to Generate Micrometerâ€High Superstructures from Monomeric Azo Materials with Extensive Orientational Mobility. Advanced Optical Materials, 2021, 9, 2100525.	3.6	4
3	Nanoscale Spatial Resolution in Far-Field Raman Imaging Using Hyperspectral Unmixing in Combination with Positivity Constrained Super-Resolution. Applied Spectroscopy, 2020, 74, 780-790.	1.2	4
4	Template process for engineering the photoluminescence of PVK and PPVâ€based nanowires. Journal of Applied Polymer Science, 2019, 136, 48201.	1.3	6
5	Sub-Micron Spatial Resolution in Far-Field Raman Imaging Using Positivity-Constrained Super-Resolution. Applied Spectroscopy, 2019, 73, 902-909.	1.2	6
6	Self-ordering promoted by the nanoconfinement of poly(3-hexylthiophene) and its nanocomposite with single-walled carbon nanotubes. Nanotechnology, 2019, 30, 055603.	1.3	5
7	Mapping the stacking interaction of triphenyl vinylene oligomers with graphene and carbon nanotubes. Carbon, 2019, 141, 274-282.	5.4	5
8	Coaxial nanowires as plasmon-mediated remote nanosensors. Nanoscale, 2018, 10, 6437-6444.	2.8	9
9	DFT Modeling of Novel Donor-Acceptor (D-A) Molecules Incorporating 3-hexylthiophene (3HT) for Bulk Heterojunction Solar Cells. ChemistrySelect, 2017, 2, 10082-10090.	0.7	15
10	Strong Color Tuning of Selfâ€Assembled Azoâ€Derived Phosphonic Acids upon Hydrogen Bonding. ChemPhotoChem, 2017, 1, 6-11.	1.5	2
11	Efficient active waveguiding properties of Mo ₆ nano-cluster-doped polymer nanotubes. Nanotechnology, 2016, 27, 255201.	1.3	10
12	Unraveling the real structures of solution-based and surface-bound poly(3-hexylthiophene) (P3HT) oligomers: a combined theoretical and experimental study. RSC Advances, 2016, 6, 56174-56182.	1.7	21
13	Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M ₆ Q ⁱ ₈ L ^a ₆] ^{nâ^'} octahedral nano-building blocks. Dalton Transactions, 2016, 45, 237-245.	1.6	53
14	Facile design of red-emitting waveguides using hybrid nanocomposites made of inorganic clusters dispersed in SU8 photoresist host. Optical Materials, 2016, 52, 196-202.	1.7	14
15	Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures. Micromachines, 2015, 6, 544-553.	1.4	5
16	Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches. Beilstein Journal of Nanotechnology, 2015, 6, 1138-1144.	1.5	9
17	Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors. Nanoscale Research Letters, 2015, 10, 475.	3.1	30
18	Low-temperature synthesis and electrophoretic deposition of shape-controlled titanium dioxide nanocrystals. RSC Advances, 2015, 5, 15118-15125.	1.7	6

#	Article	IF	CITATIONS
19	Combined theoretical and time-resolved photoluminescence investigations of [Mo ₆ Br ⁱ ₈ Br ^a ₆] ^{2â^'} metal cluster units: evidence of dual emission. Physical Chemistry Chemical Physics, 2015, 17, 28574-28585.	1.3	62
20	Nanoconfined nonequilibrium electrodeposition of metal-metal hydroxide one-dimensional nanostructures. Electrochimica Acta, 2015, 151, 347-354.	2.6	5
21	Dirac Cones in two-dimensional conjugated polymer networks. Nature Communications, 2014, 5, 5842.	5.8	69
22	Effects of single-walled carbon nanotubes on the optical and photo-conductive properties of their composite films with regio-regular poly(3-hexylthiophene). Materials Chemistry and Physics, 2014, 143, 1102-1110.	2.0	19
23	Injection and waveguiding properties in SU8 nanotubes for sub-wavelength regime propagation and nanophotonics integration. Nanoscale, 2014, 6, 5309-5314.	2.8	7
24	Deep red luminescent hybrid copolymer materials with high transition metal cluster content. Journal of Materials Chemistry C, 2014, 2, 1545-1552.	2.7	52
25	Recent Advances in Optically Active Polymerâ€Based Nanowires and Nanotubes. Advanced Optical Materials, 2014, 2, 1122-1140.	3.6	35
26	Engineering Nonlinear Electrical Behavior with Asymmetric Multisegmented Polymer–Metal Nanowires. Journal of Physical Chemistry C, 2014, 118, 9385-9394.	1.5	5
27	A copolymer of PVK and P3HT and its nanocomposite with single-walled carbon nanotubes. Synthetic Metals, 2014, 197, 246-251.	2.1	18
28	Engineered inorganic core/shell nanoparticles. Physics Reports, 2014, 543, 163-197.	10.3	104
29	The effect of conjugation length distribution on the properties of modified PPV. Journal of Physics and Chemistry of Solids, 2014, 75, 752-758.	1.9	6
30	Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 2014, 39, 862-890.	11.8	623
31	Direct injection in organic SU8 nanowires and nanotubes for waveguiding properties investigation. Proceedings of SPIE, 2014, , .	0.8	0
32	New copolymer of poly(<i>N</i> â€vinylcarbazole) and poly(<i>p</i> â€phenylenevinylene) for optoelectronic devices. Journal of Applied Polymer Science, 2013, 130, 2839-2847.	1.3	29
33	Improved photoconductive properties of composite nanofibers based on aligned conjugated polymer and single-walled carbon nanotubes. Nano Research, 2013, 6, 149-158.	5.8	17
34	Dynamic properties of the excited states of oligo-N-vinylcarbazole functionalized with single walled carbon nanotubes. Journal of Molecular Structure, 2013, 1039, 46-50.	1.8	6
35	Color Control in Coaxial Two-Luminophore Nanowires. ACS Nano, 2013, 7, 2977-2987.	7.3	53
36	Luminescence Enhancement of Pyrene/Dispersant Nanoarrays Driven by the Nanoscale Spatial Effect on Mixing. Langmuir, 2013, 29, 1627-1633.	1.6	2

#	Article	IF	CITATIONS
37	Electrophoretic deposition of TiO2 nanopillars from stable colloidal solution Materials Research Society Symposia Proceedings, 2013, 1578, 1.	0.1	0
38	Preservation of Photoluminescence Efficiency in the Ordered phases of Poly(2,3-diphenyl-1,4-phenylenevinylene) via Disturbing the Intermolecular Ï€â€″Ï€ Interactions with Dendritic Aliphatic Side Chains. Macromolecules, 2012, 45, 4540-4549.	2.2	6
39	Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers. Beilstein Journal of Nanotechnology, 2012, 3, 846-851.	1.5	8
40	Temperature and size dependence of time-resolved exciton recombination in ZnO quantum dots. Applied Physics Letters, 2011, 99, .	1.5	18
41	Phase separation of a binary liquid in anodic aluminium oxide templates. European Physical Journal E, 2011, 34, 71.	0.7	10
42	Induced Chain Alignment of Conjugated Polymers Within Nanoporous Template. Advanced Functional Materials, 2011, 21, 2729-2736.	7.8	17
43	Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Progress in Polymer Science, 2011, 36, 1415-1442.	11.8	763
44	Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results. Nanoscale Research Letters, 2010, 5, 237-42.	3.1	50
45	A Review on Electronic Transport Properties of Individual Conducting Polymer Nanotubes and Nanowires. , 2010, , .		4
46	Elaboration of conjugated polymer nanowires and nanotubes for tunable photoluminescence properties. Nanotechnology, 2009, 20, 155701.	1.3	46
47	Coaxial nickel/poly(p-phenylene vinylene) nanowires as luminescent building blocks manipulated magnetically. Nanotechnology, 2009, 20, 405601.	1.3	23
48	Steady state and transient photoluminescence in poly-p-phenylene vinylene films and nanofibers. Journal of Chemical Physics, 2009, 130, 124706.	1.2	24
49	Electronic transport through crossed conducting polymer nanowires. Journal of Materials Research, 2009, 24, 3018-3022.	1.2	9
50	Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope. Nanoscale Research Letters, 2009, 4, 63-69.	3.1	42
51	Electrical properties of isolated poly(3,4â€ethylenedioxythiophene) nanowires prepared by template synthesis. Polymers for Advanced Technologies, 2009, 20, 541-544.	1.6	22
52	Enhanced Electroactivity and Electrochromism in PEDOT Nanowires. Molecular Crystals and Liquid Crystals, 2008, 485, 835-842.	0.4	14
53	Physical properties of magnetic metallic nanowires and conjugated polymer nanowires and nanotubes. International Journal of Nanotechnology, 2008, 5, 838.	0.1	21
54	Electrical Conductivity and Current–Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires. Chinese Physics Letters, 2008, 25, 3474-3477.	1.3	16

#	Article	IF	CITATIONS
55	Tuning electrical properties of conjugated polymer nanowires with the diameter. Applied Physics Letters, 2007, 90, 102114.	1.5	51
56	Impact of the Cu-based substrates and catalyst deposition techniques on carbon nanotube growth at low temperature by PECVD. Microelectronic Engineering, 2007, 84, 2501-2505.	1.1	20
57	Magnetoresistance studies of polymer nanotube/wire pellets and single polymer nanotubes/wires. Nanotechnology, 2006, 17, 5903-5911.	1.3	46
58	Magnetic Properties of Conducting Polymer Nanostructures. Journal of Physical Chemistry B, 2006, 110, 23228-23233.	1.2	53
59	Template synthesis of carbon nanotubes from porous alumina matrix on silicon. Microelectronic Engineering, 2006, 83, 2432-2436.	1.1	12
60	Electrical conductivity of a single Au/polyaniline microfiber. Applied Physics Letters, 2006, 88, 162113.	1.5	43
61	Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures. Physica B: Condensed Matter, 2005, 370, 121-130.	1.3	147
62	Electrical and optical properties of PPV and single-walled carbon nanotubes composite films. Synthetic Metals, 2005, 155, 63-67.	2.1	44
63	Effects of the Confined Synthesis on Conjugated Polymer Transport Properties. Journal of Physical Chemistry B, 2004, 108, 18552-18556.	1.2	70
64	Preparation of Rhodium Catalysts Supported on Carbon Nanotubes by a Surface Mediated Organometallic Reaction. European Journal of Inorganic Chemistry, 2003, 2003, 610-617.	1.0	135
65	Interface investigations of iron and cobalt metallized porous silicon: AES and FTIR analyses. Physica Status Solidi A, 2003, 197, 168-174.	1.7	29
66	Physical properties of conducting polymer nanofibers. Synthetic Metals, 2003, 135-136, 329-330.	2.1	21
67	Electrodeposition of Fe–Co Alloys into Nanoporous p-type Silicon: Influence of the Electrolyte Composition. Journal of Materials Research, 2002, 17, 1074-1084.	1.2	15
68	Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers. Synthetic Metals, 2002, 131, 123-128.	2.1	133
69	Ferromagnetic resonance studies of Ni nanowire arrays. Physical Review B, 2001, 64, .	1.1	122
70	Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium. Synthetic Metals, 2001, 125, 325-329.	2.1	215
71	Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. European Physical Journal B, 2001, 20, 35-54.	0.6	177
72	Magnetoresistance of a single domain wall in Co and Ni nanowires. IEEE Transactions on Magnetics, 2000, 36, 3062-3064.	1.2	9

5

#	Article	IF	CITATIONS
73	Study of the magnetization reversal in individual nickel nanowires. Journal of Applied Physics, 2000, 87, 824-829.	1.1	109
74	Evidence for strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Physical Review B, 2000, 61, 14315-14318.	1.1	47
75	Treatment of the semiclassical Boltzmann equation for magnetic multilayers. Journal of Applied Physics, 2000, 88, 4772.	1.1	5
76	Fabrication and properties of arrays of superconducting nanowires. Journal of Materials Research, 1999, 14, 665-671.	1.2	64
77	Evidence for a short spin diffusion length in permalloy from the giant magnetoresistance of multilayered nanowires. Physical Review B, 1999, 60, 477-484.	1.1	163
78	Fabrication and properties of organic and metal nanocylinders in nanoporous membranes. Journal of Materials Research, 1999, 14, 3042-3050.	1.2	64
79	Preparation and characterization of electrodeposited Fe and Fe/Cu nanowires. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1999, 96, 1316-1331.	0.2	21
80	Observing magnetic nanowires by means of magnetic force microscopy. Journal of Magnetism and Magnetic Materials, 1998, 190, 1-16.	1.0	60
81	Electrodeposition of patterned magnetic nanostructures. Journal of Applied Physics, 1998, 84, 6359-6365.	1.1	34
82	Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires. Applied Physics Letters, 1997, 70, 396-398.	1.5	120
83	Perpendicular giant magnetoresistance of NiFe/Cu and Co/Cu multilayered nanowires. Journal of Magnetism and Magnetic Materials, 1997, 165, 30-33.	1.0	59
84	Arrays of nanowires of magnetic metals and multilayers: Perpendicular GMR and magnetic properties. Journal of Magnetism and Magnetic Materials, 1997, 175, 127-136.	1.0	45
85	Oscillatory interlayer exchange and giant magnetoresistance in magnetic multilayers. AIP Conference Proceedings, 1996, , .	0.3	4
86	Giant Magnetoresistance in Hybrid Magnetic Nanostructures Including Both Layers and Clusters. Materials Research Society Symposia Proceedings, 1995, 384, 415.	0.1	2
87	A new multilayer system:. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 611-612.	1.0	1
88	Giant magnetoresistance in hybrid nanostructures. Journal of Magnetism and Magnetic Materials, 1995, 151, 324-332.	1.0	13
89	Spin relaxation effects in the perpendicular magnetoresistance of magnetic multilayers. Physical Review B, 1995, 52, 6513-6521.	1.1	77
90	Giant magnetoresistance in magnetic nanostructures. Scripta Materialia, 1995, 6, 217-226.	0.5	12

#	Article	IF	CITATIONS
91	Angular dependence of the giant magnetoresistance effect. Physical Review B, 1995, 51, 292-296.	1.1	30
92	Calculation of the temperature dependence of the giant MR and application to Co/Cu multilayers. Journal of Applied Physics, 1994, 75, 7070-7072.	1.1	49
93	Inverse spin-valve-type magnetoresistance in spin engineered multilayered structures. Physical Review Letters, 1994, 72, 408-411.	2.9	125
94	Perpendicular magnetic anisotropy in CoxPd1â^'xalloy films grown by molecular beam epitaxy. Journal of Applied Physics, 1994, 75, 6412-6414.	1.1	35
95	Structural and Magnetoresistance Properties of Co/Cu Multilayers Doped with Fe. Materials Research Society Symposia Proceedings, 1993, 313, 737.	0.1	6
96	Critical behavior in anchoring transitions of nematic liquid crystals. Physical Review Letters, 1990, 64, 1911-1914.	2.9	43