Thomas D Breeze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668579/publications.pdf

Version: 2024-02-01

41 papers 3,338 citations

430754 18 h-index 289141 40 g-index

42 all docs 42 docs citations

times ranked

42

3694 citing authors

#	Article	IF	CITATIONS
1	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	13.7	1,204
2	Pollination services in the UK: How important are honeybees?. Agriculture, Ecosystems and Environment, 2011, 142, 137-143.	2.5	278
3	Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends in Ecology and Evolution, 2017, 32, 68-80.	4.2	258
4	Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 2014, 184, 34-40.	2.5	239
5	A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology and Evolution, 2021, 5, 1453-1461.	3.4	173
6	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	1.1	171
7	Pollinator conservationâ€"the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	2.2	118
8	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115
9	Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosystem Services, 2015, 14, 124-132.	2.3	107
10	Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity. PLoS ONE, 2016, 11, e0153889.	1.1	95
11	Economic Measures of Pollination Services: Shortcomings and Future Directions. Trends in Ecology and Evolution, 2016, 31, 927-939.	4.2	72
12	Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia) Tj ETQq0 0 0	rgBT/Over 2.5	rlock 10 Tf 50
13	Pollinator monitoring more than pays for itself. Journal of Applied Ecology, 2021, 58, 44-57.	1.9	41
14	A stated preference valuation of the non-market benefits of pollination services in the UK. Ecological Economics, 2015, 111, 76-85.	2.9	36
15	Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People and Nature, 2019, 1, 562-572.	1.7	32
16	Yield benefits of additional pollination to faba bean vary with cultivar, scale, yield parameter and experimental method. Scientific Reports, 2020, 10, 2102.	1.6	28
17	Opportunities to reduce pollination deficits and address production shortfalls in an important insectâ€pollinated crop. Ecological Applications, 2021, 31, e02445.	1.8	24
18	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	2.5	24

#	Article	IF	CITATIONS
19	Reliably predicting pollinator abundance: Challenges of calibrating processâ€based ecological models. Methods in Ecology and Evolution, 2020, 11, 1673-1689.	2.2	22
20	Costing conservation: an expert appraisal of the pollinator habitat benefits of England's entry level stewardship. Biodiversity and Conservation, 2014, 23, 1193-1214.	1.2	20
21	Evaluating a traitâ€based approach to compare natural enemy and pest communities in agroforestry vs. arable systems. Ecological Applications, 2021, 31, e02294.	1.8	20
22	Arthropod Pest Control for UK Oilseed Rape $\hat{a} \in \text{``Comparing Insecticide Efficacies, Side Effects and Alternatives. PLoS ONE, 2017, 12, e0169475.}$	1.1	17
23	European farmers' incentives to promote natural pest control service in arable fields. Land Use Policy, 2018, 78, 682-690.	2.5	17
24	Capacity and willingness of farmers and citizen scientists to monitor crop pollinators and pollination services. Global Ecology and Conservation, 2019, 20, e00781.	1.0	15
25	Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system. Ecological Economics, 2022, 191, 107214.	2.9	15
26	Economic valuation of natural pest control of the summer grain aphid in wheat in South East England. Ecosystem Services, 2018, 30, 149-157.	2.3	14
27	Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agriculture, Ecosystems and Environment, 2022, 325, 107755.	2.5	14
28	The costs of beekeeping for pollination services in the UK \hat{a} e" an explorative study. Journal of Apicultural Research, 2017, 56, 310-317.	0.7	11
29	Inventorying and monitoring crop pollinating bees: Evaluating the effectiveness of common sampling methods. Insect Conservation and Diversity, 2022, 15, 299-311.	1.4	11
30	A multilevel analysis on pollination-related policies. Ecosystem Services, 2015, 14, 133-143.	2.3	10
31	Management to Promote Flowering Understoreys Benefits Natural Enemy Diversity, Aphid Suppression and Income in an Agroforestry System. Agronomy, 2021, 11, 651.	1.3	10
32	Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. One Ecosystem, 0, 6, .	0.0	10
33	Field boundary features can stabilise bee populations and the pollination of massâ€flowering crops in rotational systems. Journal of Applied Ecology, 2021, 58, 2287-2304.	1.9	10
34	Quantifying the Carbon Sequestration Costs for Pinus elliottii Afforestation Project of China Greenhouse Gases Voluntary Emission Reduction Program: A Case Study in Jiangxi Province. Forests, 2020, 11, 928.	0.9	9
35	Globalisation and pollinators: Pollinator declines are an economic threat to global food systems. People and Nature, 2022, 4, 773-785.	1.7	9
36	Niche complementarity drives increases in pollinator functional diversity in diversified agroforestry systems. Agriculture, Ecosystems and Environment, 2022, 336, 108035.	2.5	8

3

#	Article	IF	CITATIONS
37	Scales matter: Maximising the effectiveness of interventions for pollinators and pollination. Advances in Ecological Research, 2021, 64, 105-147.	1.4	7
38	Bumblebee Pollination Enhances Yield and Flavor of Tomato in Gobi Desert Greenhouses. Agriculture (Switzerland), 2022, 12, 795.	1.4	5
39	Rapid assessment of insect pollination services to inform decisionâ€making. Conservation Biology, 2022, 36, .	2.4	3
40	Worker-Born Males Are Smaller but Have Similar Reproduction Ability to Queen-Born Males in Bumblebees. Insects, 2021, 12, 1008.	1.0	2
41	Multidimensional Performance of Farming Approaches: A Reply to Mehrabi et al Trends in Ecology and Evolution, 2017, 32, 721-722.	4.2	0