
Julien Sage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668187/publications.pdf Version: 2024-02-01

LULIEN SACE

#	Article	IF	CITATIONS
1	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	15.2	105
2	SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Reports, 2022, 38, 110453.	2.9	16
3	Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Reports, 2022, 23, e53968.	2.0	20
4	A conserved YAP/Notch/REST network controls the neuroendocrine cell fate in the lungs. Nature Communications, 2022, 13, 2690.	5.8	19
5	OCA-T1 and OCA-T2 are coactivators of POU2F3 in the tuft cell lineage. Nature, 2022, 607, 169-175.	13.7	35
6	A Call to Action: Dismantling Racial Injustices in Preclinical Research and Clinical Care of Black Patients Living with Small Cell Lung Cancer. Cancer Discovery, 2021, 11, 240-244.	7.7	10
7	The AMBRA1 E3 ligase adaptor regulates the stability of cyclinÂD. Nature, 2021, 592, 794-798.	13.7	76
8	The Long-Lost Ligase: CRL4 ^{AMBRA1} Regulates the Stability of D-Type Cyclins. DNA and Cell Biology, 2021, 40, 1457-1461.	0.9	4
9	Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature, 2021, 597, 549-554.	13.7	95
10	Small-cell lung cancer. Nature Reviews Disease Primers, 2021, 7, 3.	18.1	560
11	Mechanisms of small cell lung cancer metastasis. EMBO Molecular Medicine, 2021, 13, e13122.	3.3	102
12	NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Molecular Cell, 2021, 81, 4481-4492.e9.	4.5	42
13	RB depletion is required for the continuous growth of tumors initiated by loss of RB. PLoS Genetics, 2021, 17, e1009941.	1.5	6
14	Investigating Tumor Heterogeneity in Mouse Models. Annual Review of Cancer Biology, 2020, 4, 99-119.	2.3	42
15	Immune receptor inhibition through enforced phosphatase recruitment. Nature, 2020, 586, 779-784.	13.7	59
16	Cells of origin of lung cancers: lessons from mouse studies. Genes and Development, 2020, 34, 1017-1032.	2.7	108
17	Integrating Old and New Paradigms of G1/S Control. Molecular Cell, 2020, 80, 183-192.	4.5	140
18	A PHASE IIA STUDY REPOSITIONING DESIPRAMINE IN SMALL CELL LUNG CANCER AND OTHER HIGH-GRADE NEUROENDOCRINE TUMORS. Cancer Treatment and Research Communications, 2020, 23, 100174.	0.7	10

#	Article	IF	CITATIONS
19	Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell, 2020, 38, 129-143.e7.	7.7	57
20	New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540.	0.5	119
21	The MEK5–ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Research, 2020, 80, 1293-1303.	0.4	49
22	SETD5-Coordinated Chromatin Reprogramming Regulates Adaptive Resistance to Targeted Pancreatic Cancer Therapy. Cancer Cell, 2020, 37, 834-849.e13.	7.7	48
23	E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nature Communications, 2019, 10, 2939.	5.8	59
24	Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers. PLoS Computational Biology, 2019, 15, e1007343.	1.5	77
25	Manipulating the tumour-suppressor protein Rb in lung cancer reveals possible drug targets. Nature, 2019, 569, 343-344.	13.7	7
26	<i>RB1</i> Deletion in Retinoblastoma Protein Pathway-Disrupted Cells Results in DNA Damage and Cancer Progression. Molecular and Cellular Biology, 2019, 39, .	1.1	34
27	Taking SCLC on a Bad LSD(1) Trip One NOTCH Further. Trends in Molecular Medicine, 2019, 25, 261-264.	3.5	4
28	Cyclin D-Cdk4,6 Drives Cell-Cycle Progression via the Retinoblastoma Protein's C-Terminal Helix. Molecular Cell, 2019, 74, 758-770.e4.	4.5	162
29	Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nature Reviews Cancer, 2019, 19, 289-297.	12.8	692
30	<p>Road map for fibrolamellar carcinoma: progress and goals of a diversified approach</p> . Journal of Hepatocellular Carcinoma, 2019, Volume 6, 41-48.	1.8	5
31	Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer. Cancer Discovery, 2019, 9, 646-661.	7.7	555
32	Axon-like protrusions promote small cell lung cancer migration and metastasis. ELife, 2019, 8, .	2.8	37
33	Non-canonical functions of the RB protein in cancer. Nature Reviews Cancer, 2018, 18, 442-451.	12.8	138
34	Are there multiple cells of origin of Merkel cell carcinoma?. Oncogene, 2018, 37, 1409-1416.	2.6	84
35	Tumor heterogeneity in small cell lung cancer defined and investigated in pre-clinical mouse models. Translational Lung Cancer Research, 2018, 7, 21-31.	1.3	48
36	Cancer origins—genetics rules the day. Science, 2018, 362, 30-31.	6.0	3

Julien Sage

#	Article	IF	CITATIONS
37	Intertumoral Heterogeneity in SCLC Is Influenced by the Cell Type of Origin. Cancer Discovery, 2018, 8, 1316-1331.	7.7	123
38	Beyond the Cell Cycle: Enhancing the Immune Surveillance of Tumors Via CDK4/6 Inhibition. Molecular Cancer Research, 2018, 16, 1454-1457.	1.5	35
39	A Novel, Fully Human Anti–fucosyl-GM1 Antibody Demonstrates Potent <i>In Vitro</i> and <i>In Vivo</i> Antitumor Activity in Preclinical Models of Small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 5178-5189.	3.2	39
40	An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 2017, 8, 14294.	5.8	119
41	G1 cyclins protect pluripotency. Nature Cell Biology, 2017, 19, 149-150.	4.6	6
42	Relationship between anti-depressant use and lung cancer survival. Cancer Treatment and Research Communications, 2017, 10, 33-39.	0.7	30
43	Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell, 2017, 31, 286-299.	7.7	370
44	CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. Cancer Research, 2017, 77, 3870-3884.	0.4	163
45	Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 2017, 545, 360-364.	13.7	336
46	The role of canonical and non-canonical Hedgehog signaling in tumor progression in a mouse model of small cell lung cancer. Oncogene, 2017, 36, 5544-5550.	2.6	52
47	An <i>in vivo</i> transfection system for inducible gene expression and gene silencing in murine hepatocytes. Journal of Gene Medicine, 2017, 19, e2940.	1.4	3
48	<i>Neat1</i> is a p53-inducible lincRNA essential for transformation suppression. Genes and Development, 2017, 31, 1095-1108.	2.7	179
49	Human hepatic organoids for the analysis of human genetic diseases. JCI Insight, 2017, 2, .	2.3	156
50	Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. Journal of Clinical Investigation, 2017, 127, 2751-2764.	3.9	84
51	Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation. Oncotarget, 2017, 8, 4373-4386.	0.8	13
52	CD47 is not Over-Expressed in Fibrolamellar Hepatocellular Carcinoma. Annals of Clinical and Laboratory Science, 2017, 47, 395-402.	0.2	4
53	CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. Journal of Clinical Investigation, 2016, 126, 2610-2620.	3.9	336
54	Loss of Pten Disrupts the Thymic Epithelium and Alters Thymic Function. PLoS ONE, 2016, 11, e0149430.	1.1	4

#	Article	IF	CITATIONS
55	Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility. Cell, 2016, 166, 328-342.	13.5	304
56	Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4464-4469.	3.3	70
57	Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer. Cell Reports, 2016, 16, 644-656.	2.9	73
58	Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration. Developmental Biology, 2016, 418, 179-188.	0.9	30
59	Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle, 2016, 15, 3183-3190.	1.3	82
60	Is the Canonical RAF/MEK/ERK Signaling Pathway aÂTherapeutic Target in SCLC?. Journal of Thoracic Oncology, 2016, 11, 1233-1241.	0.5	44
61	Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes and Development, 2016, 30, 772-785.	2.7	68
62	Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes?. Journal of Thoracic Oncology, 2016, 11, 453-474.	0.5	156
63	Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway. Molecular Cancer Research, 2016, 14, 127-140.	1.5	116
64	Novel insights into the oncogenic function of the SMYD3 lysine methyltransferase. Translational Cancer Research, 2016, 5, 330-333.	0.4	8
65	Crosstalk between stem cell and cell cycle machineries. Current Opinion in Cell Biology, 2015, 37, 68-74.	2.6	34
66	Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524, 47-53.	13.7	1,634
67	The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung. Journal of Thoracic Oncology, 2015, 10, 553-564.	0.5	100
68	Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 2015, 21, 1163-1171.	15.2	349
69	Pancreatic cancer takes its Toll. Journal of Experimental Medicine, 2015, 212, 1988-1988.	4.2	1
70	Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis. Cell Stem Cell, 2015, 16, 39-50.	5.2	166
71	Genomic analysis of fibrolamellar hepatocellular carcinoma. Human Molecular Genetics, 2015, 24, 50-63.	1.4	90
72	Organ Size Control Is Dominant over Rb Family Inactivation to Restrict Proliferation InÂVivo. Cell Reports, 2014, 8, 371-381.	2.9	30

#	Article	IF	CITATIONS
73	The origin of human retinoblastoma. Nature, 2014, 514, 313-313.	13.7	30
74	<i>In Vivo</i> Disruption of an Rb–E2F–Ezh2 Signaling Loop Causes Bladder Cancer. Cancer Research, 2014, 74, 6565-6577.	0.4	76
75	From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling. Cancer Cell, 2014, 25, 318-334.	7.7	318
76	SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 2014, 510, 283-287.	13.7	331
77	Inhibiting Oncogenic RAS in Multiple Myeloma By Targeting Scaffold-ERK Interactions. Blood, 2014, 124, 2089-2089.	0.6	0
78	Defining a new vision for the retinoblastoma gene: report from the 3rd International Rb Meeting. Cell Division, 2013, 8, 13.	1.1	1
79	A Drug Repositioning Approach Identifies Tricyclic Antidepressants as Inhibitors of Small Cell Lung Cancer and Other Neuroendocrine Tumors. Cancer Discovery, 2013, 3, 1364-1377.	7.7	366
80	IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase–driven tumors. Nature Medicine, 2013, 19, 626-630.	15.2	173
81	Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. Journal of Experimental Medicine, 2013, 210, 1087-1097.	4.2	59
82	Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics, 2012, 7, 340-343.	1.3	158
83	Inactivating All Three Rb Family Pocket Proteins Is Insufficient to Initiate Cervical Cancer. Cancer Research, 2012, 72, 5418-5427.	0.4	34
84	The RB family is required for the self-renewal and survival of human embryonic stem cells. Nature Communications, 2012, 3, 1244.	5.8	71
85	The retinoblastoma tumor suppressor and stem cell biology. Genes and Development, 2012, 26, 1409-1420.	2.7	99
86	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 2012, 44, 1104-1110.	9.4	1,186
87	RB Controls Size, Cellularity, and T Cell Output of the Mouse Thymus. Blood, 2012, 120, 835-835.	0.6	0
88	PDGF signalling controls age-dependent proliferation in pancreatic Î ² -cells. Nature, 2011, 478, 349-355.	13.7	241
89	Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data. Science Translational Medicine, 2011, 3, 96ra77.	5.8	708
90	Functional Interactions between Retinoblastoma and c-MYC in a Mouse Model of Hepatocellular Carcinoma. PLoS ONE, 2011, 6, e19758.	1.1	14

Julien Sage

#	Article	IF	CITATIONS
91	Coexpression of Normally Incompatible Developmental Pathways in Retinoblastoma Genesis. Cancer Cell, 2011, 20, 260-275.	7.7	123
92	Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models. Cancer Cell, 2011, 20, 289-299.	7.7	158
93	MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Research, 2011, 21, 798-810.	2.4	61
94	Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. Journal of Experimental Medicine, 2011, 208, 1963-1976.	4.2	183
95	miR than meets the eye: Figure 1 Genes and Development, 2011, 25, 1663-1667.	2.7	16
96	Newly identified aspects of tumor suppression by RB. DMM Disease Models and Mechanisms, 2011, 4, 581-585.	1.2	69
97	A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle, 2011, 10, 2549-2560.	1.3	124
98	Characterization of the cell of origin for small cell lung cancer. Cell Cycle, 2011, 10, 2806-2815.	1.3	183
99	A crucial requirement for Hedgehog signaling in small cell lung cancer. Nature Medicine, 2011, 17, 1504-1508.	15.2	224
100	p107 in the public eye: an Rb understudy and more. Cell Division, 2010, 5, 9.	1.1	48
101	Loss of p130 Accelerates Tumor Development in a Mouse Model for Human Small-Cell Lung Carcinoma. Cancer Research, 2010, 70, 3877-3883.	0.4	201
102	Methylation of the Retinoblastoma Tumor Suppressor by SMYD2. Journal of Biological Chemistry, 2010, 285, 37733-37740.	1.6	188
103	RB's original CIN?: Figure 1 Genes and Development, 2010, 24, 1329-1333.	2.7	32
104	G1 arrest and differentiation can occur independently of Rb family function. Journal of Cell Biology, 2010, 191, 809-825.	2.3	30
105	Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions. PLoS Genetics, 2010, 6, e1001003.	1.5	30
106	Regulation of RB Transcription <i>In Vivo</i> by RB Family Members. Molecular and Cellular Biology, 2010, 30, 1729-1745.	1.1	38
107	Transient Inactivation of Rb and ARF Yields Regenerative Cells from Postmitotic Mammalian Muscle. Cell Stem Cell, 2010, 7, 198-213.	5.2	169
108	Keeping an eye on retinoblastoma control of human embryonic stem cells. Journal of Cellular Biochemistry, 2009, 108, 1023-1030.	1.2	38

#	Article	IF	CITATIONS
109	Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO Journal, 2009, 28, 2414-2427.	3.5	208
110	The retinoblastoma gene Rb and its family member p130 suppress lung adenocarcinoma induced by oncogenic K-Ras. Oncogene, 2009, 28, 1393-1399.	2.6	44
111	Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, 2008, 8, 671-682.	12.8	814
112	Hematopoietic Stem Cell Quiescence Is Maintained by Compound Contributions of the Retinoblastoma Gene Family. Cell Stem Cell, 2008, 3, 416-428.	5.2	139
113	GFP reporter mice for the retinoblastoma-related cell cycle regulator p107. Cell Cycle, 2008, 7, 2544-2552.	1.3	10
114	pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes and Development, 2007, 21, 49-54.	2.7	292
115	The Related Retinoblastoma (pRb) and p130 Proteins Cooperate to Regulate Homeostasis in the Intestinal Epithelium. Journal of Biological Chemistry, 2006, 281, 638-647.	1.6	66
116	C/EBPβ cooperates with RB:E2F to implement RasV12-induced cellular senescence. EMBO Journal, 2005, 24, 3301-3312.	3.5	141
117	Making Young Tumors Old: A New Weapon Against Cancer?. Science of Aging Knowledge Environment: SAGE KE, 2005, 2005, pe25-pe25.	0.9	7
118	Cell type-specific effects of Rb deletion in the murine retina. Genes and Development, 2004, 18, 1681-1694.	2.7	208
119	RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Research, 2004, 32, 25-34.	6.5	87
120	Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene, 2004, 23, 4107-4120.	2.6	41
121	Cyclin C Makes an Entry into the Cell Cycle. Developmental Cell, 2004, 6, 607-608.	3.1	31
122	Perp Is a Mediator of p53-Dependent Apoptosis in Diverse Cell Types. Current Biology, 2003, 13, 1985-1990.	1.8	97
123	Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature, 2003, 424, 223-228.	13.7	501
124	Recapitulation of the Effects of the Human Papillomavirus Type 16 E7 Oncogene on Mouse Epithelium by Somatic Rb Deletion and Detection of pRb-Independent Effects of E7 In Vivo. Molecular and Cellular Biology, 2003, 23, 9094-9103.	1.1	103
125	Conditional Mutation of Rb Causes Cell Cycle Defects without Apoptosis in the Central Nervous System. Molecular and Cellular Biology, 2003, 23, 1044-1053.	1.1	136
126	Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2948-2953.	3.3	176

#	Article	IF	CITATIONS
127	An Induced Ets Repressor Complex Regulates Growth Arrest during Terminal Macrophage Differentiation. Cell, 2002, 109, 169-180.	13.5	90
128	Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6427-6432.	3.3	165
129	Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes and Development, 2000, 14, 3037-3050.	2.7	546
130	Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Research, 2000, 60, 6008-17.	0.4	94
131	Temporal and spatial control of the Sycp1 gene transcription in the mouse meiosis: regulatory elements active in the male are not sufficient for expression in the female gonad. Mechanisms of Development, 1999, 80, 29-39.	1.7	39
132	Stage-Specific Signals in Germ Line Differentiation: Control of Sertoli Cell Phagocytic Activity by Spermatogenic Cells. Developmental Biology, 1997, 184, 165-174.	0.9	27
133	Transmeiotic differentiation of male germ cells in culture. Cell, 1993, 75, 997-1006.	13.5	171
134	Spatial Epitope Barcoding Reveals Subclonal Tumor Patch Behaviors. SSRN Electronic Journal, 0, , .	0.4	2