
Pavel KubÃ;Å^

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668153/publications.pdf Version: 2024-02-01

Ρλνει Κιιβά:Δ^

#	Article	IF	CITATIONS
1	Ten years of axial capacitively coupled contactless conductivity detection for CZE – a review. Electrophoresis, 2009, 30, 176-188.	2.4	197
2	Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis, 2011, 32, 1025-1032.	2.4	132
3	Capacitively coupled contactless conductivity detection for microseparation techniques – recent developments. Electrophoresis, 2011, 32, 30-42.	2.4	130
4	Electromembrane extraction: Overview of the last decade. TrAC - Trends in Analytical Chemistry, 2019, 113, 357-363.	11.4	126
5	Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection. Journal of Chromatography A, 2011, 1218, 6248-6255.	3.7	118
6	20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. TrAC - Trends in Analytical Chemistry, 2018, 102, 311-321.	11.4	108
7	Contactless conductivity detection for analytical techniques—Developments from 2012 to 2014. Electrophoresis, 2015, 36, 195-211.	2.4	88
8	Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012. Electrophoresis, 2013, 34, 55-69.	2.4	86
9	Electric fieldâ€enhanced transport across phase boundaries and membranes and its potential use in sample pretreatment for bioanalysis. Electrophoresis, 2010, 31, 768-785.	2.4	65
10	Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium. Electrophoresis, 2011, 32, 1182-1189.	2.4	64
11	Micro-electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples. Journal of Chromatography A, 2014, 1337, 32-39.	3.7	64
12	Contactless conductivity detection for analytical techniques— Developments from 2014 to 2016. Electrophoresis, 2017, 38, 95-114.	2.4	62
13	Electromembrane extraction using stabilized constant d.c. electric current—A simple tool for improvement of extraction performance. Journal of Chromatography A, 2012, 1234, 32-37.	3.7	59
14	Micro-electromembrane extraction across free liquid membranes. Instrumentation and basic principles. Journal of Chromatography A, 2014, 1346, 25-33.	3.7	55
15	Capillary electrophoresis with capacitively coupled contactless conductivity detection: A universal tool for the determination of supported liquid membrane selectivity in electromembrane extraction of complex samples. Journal of Chromatography A, 2012, 1267, 96-101.	3.7	54
16	The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution. Journal of Chromatography A, 2015, 1398, 11-19.	3.7	49
17	Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Analytica Chimica Acta, 2019, 1075, 1-26.	5.4	47
18	Quantitative aspects of electrolysis in electromembrane extractions of acidic and basic analytes. Analytica Chimica Acta, 2015, 887, 92-100.	5.4	46

Pavel KubÃiÅ^

#	Article	IF	CITATIONS
19	Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Analytica Chimica Acta, 2017, 984, 116-123.	5.4	43
20	Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018. Electrophoresis, 2019, 40, 124-139.	2.4	43
21	Capacitively coupled contactless conductivity detection for analytical techniques – Developments from 2018 to 2020. Journal of Chromatography A, 2020, 1632, 461616.	3.7	42
22	Trace determination of perchlorate using electromembrane extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis, 2011, 32, 3008-3015.	2.4	41
23	Determination of genomic 5-hydroxymethyl-2'-deoxycytidine in human DNA by capillary electrophoresis with laser induced fluorescence. Epigenetics, 2011, 6, 560-565.	2.7	35
24	Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions. Analytica Chimica Acta, 2017, 950, 49-56.	5.4	35
25	Electrokinetic injection across supported liquid membranes: New sample pretreatment technique for online coupling to capillary electrophoresis. Direct analysis of perchlorate in biological samples. Electrophoresis, 2012, 33, 2695-2702.	2.4	32
26	Direct coupling of supported liquid membranes to capillary electrophoresis for analysis of complex samples: A tutorial. Analytica Chimica Acta, 2013, 787, 10-23.	5.4	31
27	Salt Removal from Microliter Sample Volumes by Multiple Phase Microelectromembrane Extractions Across Free Liquid Membranes. Analytical Chemistry, 2017, 89, 8476-8483.	6.5	30
28	On-line coupling of a clean-up device with supported liquid membrane to capillary electrophoresis for direct injection and analysis of serum and plasma samples. Journal of Chromatography A, 2012, 1234, 2-8.	3.7	28
29	Fineâ€ŧuning of electromembrane extraction selectivity using 18â€crownâ€6 ethers as supported liquid membrane modifiers. Electrophoresis, 2014, 35, 3317-3320.	2.4	28
30	Preconcentration in micro-electromembrane extraction across free liquid membranes. Analytica Chimica Acta, 2014, 848, 43-50.	5.4	28
31	Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions. Analytica Chimica Acta, 2016, 908, 113-120.	5.4	28
32	Analysis of inorganic cations in biological samples by the combination of microâ€electrodialysis and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis, 2011, 32, 464-471.	2.4	27
33	At-line coupling of hollow fiber liquid-phase microextraction to capillary electrophoresis for trace determination of acidic drugs in complex samples. Talanta, 2022, 238, 123068.	5.5	27
34	Additional considerations on electrolysis in electromembrane extraction. Journal of Chromatography A, 2016, 1429, 364-368.	3.7	26
35	Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids. Analytica Chimica Acta, 2018, 1005, 34-42.	5.4	26
36	Paper-based molecularly imprinted-interpenetrating polymer network for on-spot collection and microextraction of dried blood spots for capillary electrophoresis determination of carbamazepine. Analytical and Bioanalytical Chemistry, 2020, 412, 2721-2730.	3.7	26

Pavel KubÃiÅ^

#	Article	lF	CITATIONS
37	Direct analysis of formate in human plasma, serum and whole blood by in-line coupling of microdialysis to capillary electrophoresis for rapid diagnosis of methanol poisoning. Analytica Chimica Acta, 2013, 768, 82-89.	5.4	25
38	Thermostatted dual hannel portable capillary electrophoresis instrument. Electrophoresis, 2016, 37, 2368-2375.	2.4	24
39	Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection for Quantitative Analysis of Dried Blood Spots with Unknown Blood Volume. Analytical Chemistry, 2020, 92, 1557-1564.	6.5	23
40	In-line coupling of microextractions across polymer inclusion membranes to capillary zone electrophoresis for rapid determination of formate in blood samples. Analytica Chimica Acta, 2015, 887, 111-117.	5.4	22
41	Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions – Towards selective extractions of analytes based on their acid-base strength. Analytica Chimica Acta, 2016, 943, 64-73.	5.4	21
42	Direct Analysis of Free Aqueous and Organic Operational Solutions as a Tool for Understanding Fundamental Principles of Electromembrane Extraction. Analytical Chemistry, 2017, 89, 12960-12967.	6.5	20
43	A simple sample pretreatment device with supported liquid membrane for direct injection of untreated body fluids and inâ€line coupling to a commercial <scp>CE</scp> instrument. Electrophoresis, 2013, 34, 289-296.	2.4	19
44	Sensitivity enhancement in direct coupling of supported liquid membrane extractions to capillary electrophoresis by means of transient isotachophoresis and large electrokinetic injections. Journal of Chromatography A, 2015, 1389, 1-7.	3.7	19
45	Fully Automated Electric-Field-Driven Liquid Phase Microextraction System with Renewable Organic Membrane As a Front End to High Performance Liquid Chromatography. Analytical Chemistry, 2019, 91, 10808-10815.	6.5	19
46	Hollow Fiber Liquid-Phase Microextraction At-Line Coupled to Capillary Electrophoresis for Direct Analysis of Human Body Fluids. Analytical Chemistry, 2020, 92, 7171-7178.	6.5	19
47	Injections from sub-μL sample volumes in commercial capillary electrophoresis. Journal of Chromatography A, 2017, 1497, 164-171.	3.7	17
48	The effect of membrane thickness on supported liquid membrane extractions in-line coupled to capillary electrophoresis for analyses of complex samples. Journal of Chromatography A, 2019, 1596, 226-232.	3.7	17
49	Supported liquid membrane extraction coupled in-line to commercial capillary electrophoresis for rapid determination of formate in undiluted blood samples. Journal of Chromatography A, 2013, 1299, 33-39.	3.7	16
50	Rapid determination of meldonium in urine samples by capillary electrophoresis with capacitively coupled contactless conductivity detection. Journal of Chromatography A, 2016, 1468, 236-240.	3.7	16
51	Two-phase micro-electromembrane extraction across free liquid membrane for determination of acidic drugs in complex samples. Analytica Chimica Acta, 2019, 1048, 58-65.	5.4	16
52	Effects of selected operational parameters on efficacy and selectivity of electromembrane extraction. Chlorophenols as model analytes. Electrophoresis, 2014, 35, 2429-2437.	2.4	15
53	In-line coupling of supported liquid membrane extraction to capillary electrophoresis for simultaneous analysis of basic and acidic drugs in urine. Journal of Chromatography A, 2017, 1519, 137-144.	3.7	15
54	Dried Blood Spot Self‧ampling with Automated Capillary Electrophoresis Processing for Clinical Analysis. Angewandte Chemie - International Edition, 2021, 60, 6068-6075.	13.8	14

Pavel KubÃiÅ^

#	Article	IF	CITATIONS
55	Two-phase micro-electromembrane extraction with a floating drop free liquid membrane for the determination of basic drugs in complex samples. Talanta, 2020, 206, 120255.	5.5	13
56	Direct capillary electrophoresis analysis of basic and acidic drugs from microliter volume of human body fluids after liquid-phase microextraction through nano-fibrous membrane. Analytical and Bioanalytical Chemistry, 2020, 412, 181-191.	3.7	11
57	Use of disposable open tubular ion exchange pre-columns for in-line clean-up of serum and plasma samples prior to capillary electrophoretic analysis of inorganic cations. Journal of Chromatography A, 2011, 1218, 856-859.	3.7	10
58	Automated Sequential Injection-Capillary Electrophoresis for Dried Blood Spot Analysis: A Proof-of-Concept Study. Analytical Chemistry, 2022, 94, 5301-5309.	6.5	7
59	Inâ€line coupling of supported liquid membrane extraction across nanofibrous membrane to capillary electrophoresis for analysis of basic drugs from undiluted body fluids. Electrophoresis, 2019, 40, 2398-2406.	2.4	6
60	Volatile free liquid membranes for electromembrane extraction. Analytica Chimica Acta, 2021, 1182, 338959.	5.4	5
61	Determination of genomic N3â€methylthymidine in human cancer cells treated with nitrosamines using capillary electrophoresis with laserâ€induced fluorescence. Electrophoresis, 2019, 40, 1535-1539.	2.4	2
62	Dried Blood Spot Self‣ampling with Automated Capillary Electrophoresis Processing for Clinical Analysis. Angewandte Chemie, 2021, 133, 6133-6140.	2.0	2