Douglas R Worsnop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & amp; Technology, 2022, 56, 770-778.	4.6	16
2	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
3	Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities. Nature Geoscience, 2022, 15, 255-261.	5.4	64
4	Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. Nature Geoscience, 2022, 15, 42-47.	5.4	25
5	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	2.6	8
6	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26
7	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	1.9	5
8	Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula. Atmospheric Chemistry and Physics, 2022, 22, 8417-8437.	1.9	7
9	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	5.4	40
10	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
11	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	1.6	74
12	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	23
13	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
14	On the calibration of FIGAERO-ToF-CIMS: importance and impact of calibrant delivery for the particle-phase calibration. Atmospheric Measurement Techniques, 2021, 14, 355-367.	1.2	28
15	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
16	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. Faraday Discussions, 2021, 226, 382-408.	1.6	13
17	An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS: isomer-resolved measurements of indoor air. Atmospheric Measurement Techniques, 2021, 14, 133-152.	1.2	31
18	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94

#	Article	IF	CITATIONS
19	The formation and evolution of secondary organic aerosol during summer in Xi'an: Aqueous phase processing in fog-rain days. Science of the Total Environment, 2021, 756, 144077.	3.9	19
20	Sulfuric acid–amine nucleation in urban Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2457-2468.	1.9	70
21	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70
22	Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes. Atmospheric Chemistry and Physics, 2021, 21, 4123-4147.	1.9	23
23	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
24	Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 5463-5476.	1.9	22
25	Detection of weakly bound clusters in incipiently sooting flames via ion seeded dilution and collision charging for (APi-TOF) mass spectrometry analysis. Fuel, 2021, 289, 119820.	3.4	5
26	Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain. Atmospheric Measurement Techniques, 2021, 14, 3693-3705.	1.2	12
27	Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds. Atmospheric Measurement Techniques, 2021, 14, 3895-3907.	1.2	10
28	An indicator for sulfuric acid–amine nucleation in atmospheric environments. Aerosol Science and Technology, 2021, 55, 1059-1069.	1.5	19
29	Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air. Atmospheric Chemistry and Physics, 2021, 21, 8455-8478.	1.9	35
30	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2021, 14, 4187-4202.	1.2	13
31	Eight years of sub-micrometre organic aerosol composition data from the boreal forest characterized using a machine-learning approach. Atmospheric Chemistry and Physics, 2021, 21, 10081-10109.	1.9	14
32	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	1.9	12
33	Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing. Environmental Science & Technology, 2021, 55, 10994-11005.	4.6	34
34	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	1.9	9
35	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
36	Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment. Environmental Science & amp; Technology, 2021, 55, 13646-13656.	4.6	32

#	Article	IF	CITATIONS
37	Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NO _{<i>x</i>} in eastern China. Atmospheric Chemistry and Physics, 2021, 21, 14789-14814.	1.9	26
38	Quantification of isomer-resolved iodide chemical ionization mass spectrometry sensitivity and uncertainty using a voltage-scanning approach. Atmospheric Measurement Techniques, 2021, 14, 6835-6850.	1.2	12
39	Chemical Emissions from Cured and Uncured 3D-Printed Ventilator Patient Circuit Medical Parts. ACS Omega, 2021, 6, 30726-30733.	1.6	11
40	Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions. Atmospheric Chemistry and Physics, 2021, 21, 17559-17576.	1.9	9
41	Unprecedented Ambient Sulfur Trioxide (SO ₃) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.	3.9	34
42	Hourly measurements of organic molecular markers in urban Shanghai, China: Observation of enhanced formation of secondary organic aerosol during particulate matter episodic periods. Atmospheric Environment, 2020, 240, 117807.	1.9	27
43	Hourly Measurements of Organic Molecular Markers in Urban Shanghai, China: Primary Organic Aerosol Source Identification and Observation of Cooking Aerosol Aging. ACS Earth and Space Chemistry, 2020, 4, 1670-1685.	1.2	43
44	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	2.0	54
45	In Situ Measurements of Molecular Markers Facilitate Understanding of Dynamic Sources of Atmospheric Organic Aerosols. Environmental Science & Technology, 2020, 54, 11058-11069.	4.6	14
46	Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems. Atmospheric Chemistry and Physics, 2020, 20, 5629-5644.	1.9	31
47	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
48	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
49	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Technology, 2020, 54, 7911-7921.	4.6	66
50	Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements. Atmospheric Chemistry and Physics, 2020, 20, 1941-1959.	1.9	46
51	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	1.2	33
52	Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol. Atmospheric Measurement Techniques, 2020, 13, 3205-3219.	1.2	27
53	Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing. Environmental Science & Technology, 2020, 54, 8547-8557.	4.6	78
54	Insights into atmospheric oxidation processes by performing factor analyses on subranges of mass spectra. Atmospheric Chemistry and Physics, 2020, 20, 5945-5961.	1.9	11

#	Article	IF	CITATIONS
55	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	1.7	57
56	A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Science of the Total Environment, 2020, 742, 140739.	3.9	138
57	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	1.5	72
58	Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.	1.2	10
59	Quantifying and improving the optical performance of the laser ablation aerosol particle time of flight mass spectrometer (LAAPToF) instrument. Aerosol Science and Technology, 2020, 54, 761-771.	1.5	3
60	Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions. Atmospheric Chemistry and Physics, 2020, 20, 2877-2890.	1.9	23
61	Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. Atmospheric Chemistry and Physics, 2020, 20, 3151-3180.	1.9	26
62	Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 3793-3807.	1.9	55
63	Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere, 2020, 255, 126850.	4.2	9
64	Seasonal variations in the sources of organic aerosol in Xi'an, Northwest China: The importance of biomass burning and secondary formation. Science of the Total Environment, 2020, 737, 139666.	3.9	16
65	Oligomer and highly oxygenated organic molecule formation from oxidation of oxygenated monoterpenes emitted by California sage plants. Atmospheric Chemistry and Physics, 2020, 20, 10953-10965.	1.9	8
66	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
67	Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.	1.9	36
68	Direct contribution of ammonia to <i>α</i> -pinene secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2020, 20, 14393-14405.	1.9	17
69	Deconvolution of FIGAERO–CIMS thermal desorption profiles using positive matrix factorisation to identify chemical and physical processes during particle evaporation. Atmospheric Chemistry and Physics, 2020, 20, 7693-7716.	1.9	28
70	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
71	Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion. Atmospheric Chemistry and Physics, 2020, 20, 9563-9579.	1.9	29
72	Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation. Atmospheric Chemistry and Physics, 2020, 20, 9783-9803.	1.9	39

#	Article	IF	CITATIONS
73	A Black Carbonâ€Tracer Method for Estimating Cooking Organic Aerosol From Aerosol Mass Spectrometer Measurements. Geophysical Research Letters, 2019, 46, 8474-8483.	1.5	16
74	A novel approach for simple statistical analysis of high-resolution mass spectra. Atmospheric Measurement Techniques, 2019, 12, 3761-3776.	1.2	24
75	Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmospheric Chemistry and Physics, 2019, 19, 10319-10334.	1.9	42
76	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	1.2	56
77	Measurement techniques for identifying and quantifying hydroxymethanesulfonate (HMS) in an aqueous matrix and particulate matter using aerosol mass spectrometry and ion chromatography. Atmospheric Measurement Techniques, 2019, 12, 5303-5315.	1.2	23
78	Joint Impacts of Acidity and Viscosity on the Formation of Secondary Organic Aerosol from Isoprene Epoxydiols (IEPOX) in Phase Separated Particles. ACS Earth and Space Chemistry, 2019, 3, 2646-2658.	1.2	80
79	Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating State for Two California, USA, Cities in Winter and Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1550-1577.	1.2	99
80	The Cooling Rate- and Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy. Environmental Science & Technology, 2019, 53, 12366-12378.	4.6	37
81	Laboratory and field evaluation of the Aerosol Dynamics Inc. concentrator (ADIc) for aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 3907-3920.	1.2	3
82	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	5.8	91
83	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	4.6	32
84	Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution, 2019, 255, 113345.	3.7	74
85	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	1.9	45
86	Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment, 2019, 213, 499-504.	1.9	49
87	Insights into the O : C-dependent mechanisms controlling the evaporation of <i>l±</i> -pinene secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2019, 19, 4061-4073.	1.9	23
88	Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmospheric Measurement Techniques, 2019, 12, 2403-2421.	1.2	119
89	Ultrasonic nebulization for the elemental analysis of microgram-level samples with offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 1659-1671.	1.2	15
90	NO _{<i></i> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d₇ and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm. Atmospheric Measurement Tech 299-311.}	1.2 niques, 20	13 19, 12,

#	Article	IF	CITATIONS
91	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	1.2	52
92	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
93	Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmospheric Chemistry and Physics, 2019, 19, 2283-2298.	1.9	74
94	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	23.0	460
95	Distinguishing fuel and lubricating oil combustion products in diesel engine exhaust particles. Aerosol Science and Technology, 2019, 53, 594-607.	1.5	29
96	Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. Atmospheric Chemistry and Physics, 2019, 19, 15117-15129.	1.9	52
97	Molecular characterization of alkyl nitrates in atmospheric aerosols by ion mobility mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 5535-5545.	1.2	15
98	Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 12163-12174.	1.9	29
99	Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1132-1147.	1.2	155
100	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	1.2	28
101	Exploratory analysis of a sooting premixed flame via on-line high resolution (APi–TOF) mass spectrometry. Proceedings of the Combustion Institute, 2019, 37, 919-926.	2.4	21
102	Influence of Emissions and Aqueous Processing on Particles Containing Black Carbon in a Polluted Urban Environment: Insights From a Soot Particleâ€Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6648-6666.	1.2	41
103	Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. Nature Chemistry, 2018, 10, 462-468.	6.6	92
104	Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry, 2018, 2, 410-421.	1.2	24
105	Terpene Composition Complexity Controls Secondary Organic Aerosol Yields from Scots Pine Volatile Emissions. Scientific Reports, 2018, 8, 3053.	1.6	44
106	Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environmental Science and Technology Letters, 2018, 5, 167-174.	3.9	131
107	Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2018, 52, 626-641.	1.5	49
108	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	1.9	21

#	Article	IF	CITATIONS
109	Characterization and source apportionment of organic aerosol at 260 m on aÂmeteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 3951-3968.	1.9	27
110	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	1.9	56
111	Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.	1.5	25
112	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 1191-1199.	4.6	85
113	Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmospheric Chemistry and Physics, 2018, 18, 17705-17716.	1.9	17
114	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	1.9	34
115	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
116	Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica. Science Advances, 2018, 4, eaat9744.	4.7	79
117	The role of H ₂ SO ₄ -NH <sub&a anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics. 2018. 18. 13231-13243.</sub&a 	mp;gt;3&a	amp;lt;/sub&
118	Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 12011-12018.	3.2	168
119	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	1.9	57
120	Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 8469-8489.	1.9	110
121	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.	6.0	415
122	Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013. ACS Earth and Space Chemistry, 2018, 2, 653-672.	1.2	56
123	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
124	Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation. Faraday Discussions, 2017, 200, 165-194.	1.6	40
125	Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species. Aerosol Science and Technology, 2017, 51, 735-754.	1.5	63
126	Limited formation of isoprene epoxydiolsâ€derived secondary organic aerosol under NO _x â€rich environments in Eastern China. Geophysical Research Letters, 2017, 44, 2035-2043.	1.5	39

#	Article	IF	CITATIONS
127	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	1.6	29
128	Highly Oxygenated Multifunctional Compounds in α-Pinene Secondary Organic Aerosol. Environmental Science & Technology, 2017, 51, 5932-5940.	4.6	93
129	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	1.5	74
130	Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Science and Technology, 2017, 51, 30-56.	1.5	39
131	Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discussions, 2017, 200, 579-598.	1.6	37
132	SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses. Bulletin of the American Meteorological Society, 2017, 98, 2215-2228.	1.7	18
133	Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene. Environmental Science & Technology, 2017, 51, 1423-1432.	4.6	9
134	Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China. Environmental Science & amp; Technology, 2017, 51, 762-770.	4.6	179
135	Sources and Chemical Composition of Particulate Matter During Haze Pollution Events in China. , 2017, , 49-68.		2
136	Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 using the aerosol chemical speciation monitor (ACSM). Atmospheric Environment, 2017, 167, 389-402.	1.9	26
137	Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 673-682.	1.2	42
138	Severe Pollution in China Amplified by Atmospheric Moisture. Scientific Reports, 2017, 7, 15760.	1.6	151
139	Automated single-ion peak fitting as an efficient approach for analyzing complex chromatographic data. Journal of Chromatography A, 2017, 1529, 81-92.	1.8	35
140	Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species. Environmental Science & Technology, 2017, 51, 8491-8500.	4.6	117
141	Laboratory characterization of an aerosol chemical speciation monitor with PM _{2.5} measurement capability. Aerosol Science and Technology, 2017, 51, 69-83.	1.5	82
142	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	1.9	66
143	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
144	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	1.9	14

#	Article	IF	CITATIONS
145	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	1.9	7
146	Field characterization of the PM _{2.5} Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fineÂparticles in eastern China. Atmospheric Chemistry and Physics, 2017, 17, 14501-14517.	1.9	58
147	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	1.9	23
148	Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle. Atmospheric Chemistry and Physics, 2017, 17, 5311-5329.	1.9	55
149	Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmospheric Measurement Techniques, 2017, 10, 3575-3588.	1.2	177
150	Collection efficiency of <i>α</i> -pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry. Atmospheric Measurement Techniques, 2017, 10, 1139-1154.	1.2	16
151	Controlled nitric oxide production via O(¹ D) +â€N ₂ O reactions for use in oxidation flow reactor studies. Atmospheric Measurement Techniques, 2017, 10, 2283-2298.	1.2	42
152	Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species. Atmospheric Measurement Techniques, 2017, 10, 2897-2921.	1.2	51
153	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	5.4	66
154	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
155	Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM. Atmospheric Measurement Techniques, 2016, 9, 3263-3281.	1.2	24
156	Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species. Atmospheric Measurement Techniques, 2016, 9, 3245-3262.	1.2	64
157	Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & amp; Technology, 2016, 50, 8613-8622.	4.6	89
158	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	1.2	99
159	"APEC Blue†Secondary Aerosol Reductions from Emission Controls in Beijing. Scientific Reports, 2016, 6, 20668.	1.6	155
160	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	1.2	17
161	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	13.7	540
162	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	13.7	528

#	Article	IF	CITATIONS
163	New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.	6.0	348
164	Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. Environmental Science & Technology, 2016, 50, 5702-5710.	4.6	54
165	Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environmental Science and Technology Letters, 2016, 3, 42-46.	3.9	12
166	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	3.3	107
167	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	13.7	237
168	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.	4.6	88
169	Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.	1.5	13
170	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	6.0	289
171	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5.8	116
172	Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. Atmospheric Chemistry and Physics, 2016, 16, 1139-1160.	1.9	32
173	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of <i>α</i> -pinene. Atmospheric Chemistry and Physics, 2016, 16, 6495-6509.	1.9	71
174	Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmospheric Chemistry and Physics, 2016, 16, 8309-8329.	1.9	288
175	Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions. Atmospheric Chemistry and Physics, 2016, 16, 14527-14543.	1.9	95
176	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	1.9	47
177	Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2016, 16, 1187-1205.	1.9	28
178	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	1.9	118
179	A novel framework for molecular characterization of atmospherically relevant organic compounds based on collision cross section and mass-to-charge ratio. Atmospheric Chemistry and Physics, 2016, 16, 12945-12959.	1.9	22
180	Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmospheric Chemistry and Physics, 2016, 16, 13251-13269.	1.9	76

#	Article	IF	CITATIONS
181	Observation of viscosity transition in <i>α</i> -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	1.9	55
182	On secondary new particle formation in China. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	43
183	Comment on "The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer― Aerosol Science and Technology, 2016, 50, i-xv.	1.5	39
184	Development of an aerosol mass spectrometer lens system for PM2.5. Aerosol Science and Technology, 2016, 50, 781-789.	1.5	39
185	Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. Journal of Physical Chemistry C, 2016, 120, 7444-7450.	1.5	45
186	Development of a volatility and polarity separator (VAPS) for volatility- and polarity-resolved organic aerosol measurement. Aerosol Science and Technology, 2016, 50, 255-271.	1.5	19
187	Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016, 3, 121-126.	3.9	67
188	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	1.5	43
189	Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophysical Research Letters, 2015, 42, 10,486.	1.5	27
190	Characterization of black carbonâ€containing particles from soot particle aerosol mass spectrometer measurements on the R/V <i>Atlantis</i> during CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2575-2593.	1.2	47
191	Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15, 1769-1781.	1.9	147
192	Adsorptive uptake of water by semisolid secondary organic aerosols. Geophysical Research Letters, 2015, 42, 3063-3068.	1.5	139
193	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub and ternary (H₂SO₄–H<sub< td=""><td>>2 1.9 >2</td><td>2</td></sub<></sub 27 2	>2 1.9 >2	2
194	system. Atmospheric Chemistry and Physics, 2015, 15, 10701-10721. Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) – chemical composition, origins and organic aerosol sources. Atmospheric Chemistry and Physics, 2015, 15, 11373-11398.	1.9	55
195	Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2015, 15, 12879-12895.	1.9	100
196	Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?. Atmospheric Chemistry and Physics, 2015, 15, 13599-13613.	1.9	103
197	Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study. Atmospheric Chemistry and Physics, 2015, 15, 13681-13698.	1.9	117
198	Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 2015, 15, 10149-10165.	1.9	324

#	Article	IF	CITATIONS
199	Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Atmospheric Chemistry and Physics, 2015, 15, 3063-3075.	1.9	177
200	Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	1.9	17
201	Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011.	1.2	30
202	Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776.	1.9	126
203	Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Atmospheric Measurement Techniques, 2015, 8, 1-18.	1.2	63
204	Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: effects of mass accuracy on location-constrained fits. Atmospheric Measurement Techniques, 2015, 8, 4615-4636.	1.2	20
205	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7123-7128.	3.3	337
206	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	1.9	84
207	Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene. Journal of Physical Chemistry A, 2015, 119, 4633-4650.	1.1	101
208	Changes to the Chemical Composition of Soot from Heterogeneous Oxidation Reactions. Journal of Physical Chemistry A, 2015, 119, 1154-1163.	1.1	33
209	Real-Time Chemical Composition Analysis of Particulate Emissions from Woodchip Combustion. Energy & Fuels, 2015, 29, 1143-1150.	2.5	14
210	Ethylene Glycol Emissions from On-road Vehicles. Environmental Science & Technology, 2015, 49, 3322-3329.	4.6	9
211	Investigations of SP-AMS Carbon Ion Distributions as a Function of Refractory Black Carbon Particle Type. Aerosol Science and Technology, 2015, 49, 409-422.	1.5	29
212	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	4.6	172
213	Atmospheric Evolution of Sulfur Emissions from KıÌlauea: Real-Time Measurements of Oxidation, Dilution, and Neutralization within a Volcanic Plume. Environmental Science & Technology, 2015, 49, 4129-4137.	4.6	29
214	Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs. Physical Chemistry Chemical Physics, 2015, 17, 14796-14804.	1.3	14
215	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15, 253-272.	1.9	736
216	Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution. International Journal of Mass Spectrometry, 2015, 389, 26-38.	0.7	78

#	Article	IF	CITATIONS
217	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 2015, 6, 8435.	5.8	266
218	Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry. Environmental Science & Technology, 2015, 49, 11340-11347.	4.6	124
219	Chemical Compositions of Black Carbon Particle Cores and Coatings via Soot Particle Aerosol Mass Spectrometry with Photoionization and Electron Ionization. Journal of Physical Chemistry A, 2015, 119, 4589-4599.	1.1	44
220	Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmospheric Measurement Techniques, 2014, 7, 689-700.	1.2	73
221	Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN. Atmospheric Measurement Techniques, 2014, 7, 3849-3859.	1.2	7
222	Evaluation of the performance of a particle concentrator for online instrumentation. Atmospheric Measurement Techniques, 2014, 7, 2121-2135.	1.2	14
223	Rapid Autoxidation Forms Highly Oxidized RO ₂ Radicals in the Atmosphere. Angewandte Chemie - International Edition, 2014, 53, 14596-14600.	7.2	186
224	The First Combined Thermal Desorption Aerosol Gas Chromatograph—Aerosol Mass Spectrometer (TAG-AMS). Aerosol Science and Technology, 2014, 48, 358-370.	1.5	47
225	Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia. Atmospheric Measurement Techniques, 2014, 7, 1929-1941.	1.2	70
226	Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmospheric Measurement Techniques, 2014, 7, 4507-4516.	1.2	71
227	Composition and Sources of the Organic Particle Emissions from Aircraft Engines. Aerosol Science and Technology, 2014, 48, 61-73.	1.5	23
228	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	4.6	51
229	Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation. Annual Review of Physical Chemistry, 2014, 65, 21-37.	4.8	242
230	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	6.0	456
231	High-Resolution Mobility and Mass Spectrometry of Negative Ions Produced in a ²⁴¹ Am Aerosol Charger. Aerosol Science and Technology, 2014, 48, 261-270.	1.5	37
232	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	3.3	208
233	An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds. Environmental Science & amp; Technology, 2014, 48, 6309-6317.	4.6	406
234	Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.	1.5	26

#	Article	IF	CITATIONS
235	The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene. Journal of the American Chemical Society, 2014, 136, 15596-15606.	6.6	236
236	Carbon clusters in 50nm urban air aerosol particles quantified by laser desorption–ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2014, 358, 17-24.	0.7	14
237	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
238	Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters, 2014, 41, 2644-2651.	1.5	175
239	Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland–urban mixed region. Atmospheric Chemistry and Physics, 2014, 14, 13483-13495.	1.9	53
240	Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2014, 14, 7585-7599.	1.9	115
241	Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	1.9	94
242	Chemical composition, main sources and temporal variability of PM ₁ aerosols in southern African grassland. Atmospheric Chemistry and Physics, 2014, 14, 1909-1927.	1.9	81
243	Chemistry of new particle growth in mixed urban and biogenic emissions – insights from CARES. Atmospheric Chemistry and Physics, 2014, 14, 6477-6494.	1.9	52
244	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	1.9	89
245	The role of low volatile organics on secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2014, 14, 1689-1700.	1.9	64
246	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	1.9	308
247	Comparing simulated and experimental molecular cluster distributions. Faraday Discussions, 2013, 165, 75.	1.6	33
248	Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. Journal of Aerosol Science, 2013, 56, 61-77.	1.8	89
249	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	13.7	774
250	How do organic vapors contribute to new-particle formation?. Faraday Discussions, 2013, 165, 91.	1.6	105
251	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	6.0	876
252	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	5.4	282

#	Article	IF	CITATIONS
253	Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time. Environmental Science & Technology, 2013, 47, 6316-6324.	4.6	304
254	Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor. Environmental Science & Technology, 2013, 47, 5686-5694.	4.6	186
255	Relationship between Oxidation Level and Optical Properties of Secondary Organic Aerosol. Environmental Science & Technology, 2013, 47, 6349-6357.	4.6	265
256	Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets. Environmental Science & amp; Technology, 2013, 47, 12123-12130.	4.6	21
257	Aerosol Chemical Composition in Cloud Events by High Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2013, 47, 2645-2653.	4.6	40
258	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles. , 2013, , .		0
259	Two-dimensional volatility basis set modeling of pinanediol oxidation in the CLOUD experiment. , 2013, , \cdot		1
260	Does the onset of new particle formation occur in the planetary boundary layer?. , 2013, , .		1
261	The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Measurement Techniques, 2013, 6, 3225-3241.	1.2	184
262	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	1.2	44
263	Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer. Atmospheric Measurement Techniques, 2013, 6, 3271-3280.	1.2	79
264	Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science, 2013, 339, 393-393.	6.0	35
265	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	3.3	300
266	Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmospheric Chemistry and Physics, 2013, 13, 2091-2113.	1.9	146
267	Identification and quantification of particle growth channels during new particle formation. Atmospheric Chemistry and Physics, 2013, 13, 10215-10225.	1.9	20
268	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	1.9	28
269	Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft. Atmospheric Chemistry and Physics, 2013, 13, 7845-7858.	1.9	36
270	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃѬ҈¤Finland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	1.9	53

#	Article	IF	CITATIONS
271	Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006. Atmospheric Chemistry and Physics, 2013, 13, 5049-5062.	1.9	60
272	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	1.9	33
273	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environmental Chemistry, 2013, 10, 151.	0.7	103
274	Chemical Characterization of Submicron Aerosol Particles in Santiago de Chile. Aerosol and Air Quality Research, 2013, 13, 462-473.	0.9	55
275	Pollution Gradients and Chemical Characterization ofÂParticulateÂMatter from Vehicular Traffic near Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Science and Technology, 2012, 46, 1201-1218.	1.5	102
276	A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	1.5	99
277	The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience, 2012, 5, 453-458.	5.4	350
278	Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application. Aerosol Science and Technology, 2012, 46, 804-817.	1.5	316
279	Real-Time Measurements of Engine-Out Trace Elements: Application of a Novel Soot Particle Aerosol Mass Spectrometer for Emissions Characterization. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	0.5	21
280	Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES. Atmospheric Chemistry and Physics, 2012, 12, 8131-8156.	1.9	146
281	Long-term volatility measurements of submicron atmospheric aerosol in HyytiÃÞAPFinland. Atmospheric Chemistry and Physics, 2012, 12, 10771-10786.	1.9	45
282	Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF. Atmospheric Chemistry and Physics, 2012, 12, 309-325.	1.9	41
283	Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 2012, 12, 5113-5127.	1.9	222
284	Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmospheric Chemistry and Physics, 2012, 12, 7517-7529.	1.9	219
285	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	1.9	94
286	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. Atmospheric Chemistry and Physics, 2012, 12, 941-959.	1.9	51
287	Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmospheric Chemistry and Physics, 2012, 12, 4117-4125.	1.9	393
288	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	1.9	45

#	Article	IF	CITATIONS
289	Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles. Environmental Chemistry, 2012, 9, 211.	0.7	35
290	Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science, 2012, 337, 1078-1081.	6.0	618
291	Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry. Analytical Chemistry, 2012, 84, 2335-2342.	3.2	101
292	Particulate Emissions Measured During the TCEQ Comprehensive Flare Emission Study. Industrial & Engineering Chemistry Research, 2012, 51, 12586-12592.	1.8	28
293	Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors. Environmental Science & Technology, 2012, 46, 5430-5437.	4.6	181
294	Mass Spectral Analysis of Organic Aerosol Formed Downwind of the Deepwater Horizon Oil Spill: Field Studies and Laboratory Confirmations. Environmental Science & Technology, 2012, 46, 8025-8034.	4.6	45
295	OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol. Journal of Physical Chemistry A, 2012, 116, 6358-6365.	1.1	61
296	On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. Journal of Geophysical Research, 2012, 117, .	3.3	107
297	Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .	3.3	44
298	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
299	The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixedâ€phase cloud formation. Journal of Geophysical Research, 2012, 117,	3.3	139
300	Chemistry and Composition of Atmospheric Aerosol Particles. Annual Review of Physical Chemistry, 2012, 63, 471-491.	4.8	93
301	Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO ₂ . Journal of Physical Chemistry Letters, 2012, 3, 2892-2896.	2.1	88
302	Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environmental Science & amp; Technology, 2011, 45, 910-916.	4.6	336
303	Evaluating the Mixing of Organic Aerosol Components Using High-Resolution Aerosol Mass Spectrometry. Environmental Science & Technology, 2011, 45, 6329-6335.	4.6	44
304	Formation of Secondary Organic Aerosol from the Direct Photolytic Generation of Organic Radicals. Journal of Physical Chemistry Letters, 2011, 2, 1295-1300.	2.1	10
305	Detecting high contributions of primary organic matter to marine aerosol: A case study. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	113
306	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103

#	Article	IF	CITATIONS
307	Correction to "Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles― Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	5
308	Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	118
309	Update 1 of: Mass Accommodation and Chemical Reactions at Gasâ°'Liquid Interfaces. Chemical Reviews, 2011, 111, PR76-109.	23.0	61
310	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	13.7	1,114
311	Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry, 2011, 3, 133-139.	6.6	890
312	Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmospheric Measurement Techniques, 2011, 4, 445-461.	1.2	298
313	Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmospheric Measurement Techniques, 2011, 4, 1275-1289.	1.2	39
314	Real-Time Measurements of Engine-Out Trace Elements: Application of a Novel Soot Particle Aerosol Mass Spectrometer for Emissions Characterization. , 2011, , .		1
315	Relating hygroscopicity and composition of organic aerosol particulate matter. Atmospheric Chemistry and Physics, 2011, 11, 1155-1165.	1.9	326
316	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric Chemistry and Physics, 2011, 11, 12109-12136.	1.9	421
317	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
318	Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2011, 11, 1865-1877.	1.9	162
319	Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmospheric Chemistry and Physics, 2011, 11, 8913-8928.	1.9	307
320	Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmospheric Chemistry and Physics, 2011, 11, 12369-12386.	1.9	110
321	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. Atmospheric Chemistry and Physics, 2011, 11, 12387-12420.	1.9	129
322	Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions. Atmospheric Chemistry and Physics, 2011, 11, 1367-1378.	1.9	68
323	The effect of H ₂ SO ₄ – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmospheric Chemistry and Physics, 2011, 11, 3007-3019.	1.9	69
324	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392

#	Article	IF	CITATIONS
325	Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 2011, 11, 6465-6474.	1.9	493
326	Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2011, 11, 8759-8766.	1.9	92
327	Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8827-8845.	1.9	190
328	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics, 2011, 11, 9019-9036.	1.9	160
329	Special Issue on Aerosol Measurements in the 1 nm Range. Aerosol Science and Technology, 2011, 45, i-i.	1.5	10
330	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Science and Technology, 2011, 45, 522-532.	1.5	72
331	Observations of Nano-CN in the Nocturnal Boreal Forest. Aerosol Science and Technology, 2011, 45, 499-509.	1.5	43
332	Characterization of organic compounds in 10- to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques. Atmospheric Environment, 2011, 45, 3711-3719.	1.9	20
333	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	1.9	764
334	Real-time aerosol mass spectrometry with millisecond resolution. International Journal of Mass Spectrometry, 2011, 303, 15-26.	0.7	63
335	Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2011, 303, 164-172.	0.7	4
336	An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Science and Technology, 2011, 45, 780-794.	1.5	675
337	Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2011, 4, 2767-2776.	1.2	47
338	A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 2011, 4, 1471-1479.	1.2	200
339	Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning of Wildland Fuels. Aerosol Science and Technology, 2010, 44, i-v.	1.5	156
340	Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 8933-8945.	1.9	322
341	Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. Atmospheric Chemistry and Physics, 2010, 10, 8947-8968.	1.9	107
342	Contributions from DMS and ship emissions to CCN observed over the summertime North Pacific. Atmospheric Chemistry and Physics, 2010, 10, 1287-1314.	1.9	37

#	Article	IF	CITATIONS
343	Cloud albedo increase from carbonaceous aerosol. Atmospheric Chemistry and Physics, 2010, 10, 7669-7684.	1.9	33
344	Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds. Atmospheric Chemistry and Physics, 2010, 10, 11577-11603.	1.9	114
345	Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 2063-2077.	1.9	87
346	Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations. Atmospheric Chemistry and Physics, 2010, 10, 5371-5389.	1.9	48
347	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	1.9	170
348	Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Environment, 2010, 44, 131-140.	1.9	242
349	An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010, 467, 824-827.	13.7	719
350	A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3, 1039-1053.	1.2	436
351	Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmospheric Measurement Techniques, 2010, 3, 301-310.	1.2	63
352	High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS. Atmospheric Measurement Techniques, 2010, 3, 1063-1074.	1.2	51
353	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	1.9	908
354	Chakrabarty <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 104, .	2.9	4
355	A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID. Atmospheric Measurement Techniques, 2010, 3, 1423-1436.	1.2	16
356	Evolution of Vehicle Exhaust Particles in the Atmosphere. Journal of the Air and Waste Management Association, 2010, 60, 1192-1203.	0.9	59
357	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	1.9	352
358	Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO ₃ radical chemistry, and N ₂ O ₅ heterogeneous hydrolysis. Journal of Geophysical Research, 2010, 115	3.3	67
359	Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments. Geophysical Research Letters, 2010, 37, .	1.5	46
360	Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophysical Research Letters, 2010, 37, .	1.5	257

#	Article	IF	CITATIONS
361	Soot Particle Studies—Instrument Inter-Comparison—Project Overview. Aerosol Science and Technology, 2010, 44, 592-611.	1.5	228
362	Photo-Oxidation of Low-Volatility Organics Found in Motor Vehicle Emissions: Production and Chemical Evolution of Organic Aerosol Mass. Environmental Science & Technology, 2010, 44, 1638-1643.	4.6	82
363	Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan. Environmental Science & amp; Technology, 2010, 44, 7005-7010.	4.6	187
364	Characterization of a thermodenuder-particle beam mass spectrometer system for the study of organic aerosol volatility and composition. Atmospheric Measurement Techniques, 2009, 2, 15-31.	1.2	98
365	Chemical Properties of Aircraft Engine Particulate Exhaust Emissions. Journal of Propulsion and Power, 2009, 25, 1121-1137.	1.3	82
366	Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame. Physical Review Letters, 2009, 102, 235504.	2.9	51
367	Sampling Artifacts from Conductive Silicone Tubing. Aerosol Science and Technology, 2009, 43, 855-865.	1.5	68
368	Intermediate-Volatility Organic Compounds: A Potential Source of Ambient Oxidized Organic Aerosol. Environmental Science & Technology, 2009, 43, 4744-4749.	4.6	103
369	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
370	Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Physical Chemistry Chemical Physics, 2009, 11, 8005.	1.3	318
371	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. Atmospheric Chemistry and Physics, 2009, 9, 3425-3442.	1.9	114
372	New particle formation from the oxidation of direct emissions of pine seedlings. Atmospheric Chemistry and Physics, 2009, 9, 8121-8137.	1.9	64
373	A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City. Atmospheric Chemistry and Physics, 2009, 9, 2499-2516.	1.9	75
374	Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 2009, 9, 2891-2918.	1.9	1,276
375	Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 3095-3111.	1.9	119
376	The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmospheric Chemistry and Physics, 2009, 9, 3209-3222.	1.9	211
377	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) $\hat{a} \in$ Part 1: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 2009, 9, 6633-6653.	1.9	525
378	Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 2009, 9, 7161-7182.	1.9	289

#	ARTICLE	IF	CITATIONS
379	Loading-dependent elemental composition of α-pinene SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 771-782.	1.9	272
380	Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2009, 9, 7769-7793.	1.9	98
381	Morphology based particle segregation by electrostatic charge. Journal of Aerosol Science, 2008, 39, 785-792.	1.8	19
382	Correlation of secondary organic aerosol with odd oxygen in Mexico City. Geophysical Research Letters, 2008, 35, .	1.5	161
383	A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Physical Chemistry Chemical Physics, 2008, 10, 3093.	1.3	54
384	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	4.6	1,524
385	Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements. Aerosol Science and Technology, 2008, 42, 395-407.	1.5	201
386	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	1.9	94
387	Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2008, 8, 2073-2088.	1.9	175
388	CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles. Atmospheric Chemistry and Physics, 2008, 8, 3735-3748.	1.9	41
389	The role of VOC oxidation products in continental new particle formation. Atmospheric Chemistry and Physics, 2008, 8, 2657-2665.	1.9	202
390	Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2007, 41, 721-733.	1.5	308
391	An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles. Aerosol Science and Technology, 2007, 41, 295-314.	1.5	276
392	Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. Aerosol Science and Technology, 2007, 41, 828-839.	1.5	50
393	Measurements of Morphology Changes of Fractal Soot Particles using Coating and Denuding Experiments: Implications for Optical Absorption and Atmospheric Lifetime. Aerosol Science and Technology, 2007, 41, 734-750.	1.5	92
394	Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field. Atmospheric Chemistry and Physics, 2007, 7, 549-556.	1.9	57
395	Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). Aerosol Science and Technology, 2007, 41, 865-872.	1.5	28
396	Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment. Applied Optics, 2007, 46, 6990.	2.1	93

#	Article	IF	CITATIONS
397	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .	1.5	1,773
398	A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 3213-3219.	4.6	341
399	A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer. Aerosol Science and Technology, 2007, 41, 125-135.	1.5	258
400	Nucleation of Bulk Phases in the HCl/H2O System. Journal of Physical Chemistry A, 2007, 111, 8635-8641.	1.1	2
401	Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research, 2007, 112, .	3.3	256
402	Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2007, 112, .	3.3	42
403	Chemical speciation of organic aerosol during the International Consortium for Atmospheric Research on Transport and Transformation 2004: Results from in situ measurements. Journal of Geophysical Research, 2007, 112, .	3.3	92
404	Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004. Journal of Geophysical Research, 2007, 112, .	3.3	61
405	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
406	Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England Air Quality Study field campaign. Journal of Geophysical Research, 2007, 112, .	3.3	87
407	Laboratory and Ambient Particle Density Determinations using Light Scattering in Conjunction with Aerosol Mass Spectrometry. Aerosol Science and Technology, 2007, 41, 343-359.	1.5	208
408	Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26, 185-222.	2.8	1,708
409	Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. International Journal of Mass Spectrometry, 2007, 263, 152-170.	0.7	167
410	Mass Accommodation and Chemical Reactions at Gasâ^'Liquid Interfaces. Chemical Reviews, 2006, 106, 1323-1354.	23.0	243
411	Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letters, 2006, 33, .	1.5	1,027
412	Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2006, 111, .	3.3	149
413	Partitioning of HNO3and particulate nitrate over Tokyo: Effect of vertical mixing. Journal of Geophysical Research, 2006, 111, .	3.3	76
414	Size-selective nonrefractory ambient aerosol measurements during the Particulate Matter Technology Assessment and Characterization Study–New York 2004 Winter Intensive in New York City. Journal of Geophysical Research, 2006, 111, .	3.3	48

#	Article	IF	CITATIONS
415	Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2006, 111, .	3.3	48
416	Heterogeneous Uptake of 8â^'2 Fluorotelomer Alcohol on Liquid Water and 1-Octanol Dropletsâ€. Journal of Physical Chemistry A, 2006, 110, 6814-6820.	1.1	12
417	Characterization of the aerosol over the sub-arctic north east Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2410-2433.	0.6	91
418	Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign – PartÂl: Model description and application to the La Merced site. Atmospheric Chemistry and Physics, 2006, 6, 4867-4888.	1.9	16
419	Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign – PartÂll: Model application to the CENICA, Pedregal and Santa Ana sites. Atmospheric Chemistry and Physics, 2006, 6, 4889-4904.	1.9	34
420	Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 5649-5666.	1.9	39
421	A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmospheric Chemistry and Physics, 2006, 6, 5279-5293.	1.9	247
422	Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 315-327.	1.9	150
423	The relative importance of competing pathways for the formation of high-molecular-weight peroxides in the ozonolysis of organic aerosol particles. Atmospheric Chemistry and Physics, 2006, 6, 4851-4866.	1.9	44
424	Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 2006, 6, 925-946.	1.9	341
425	Identification and characterization of inland ship plumes over Vancouver, BC. Atmospheric Environment, 2006, 40, 2767-2782.	1.9	76
426	Density changes of aerosol particles as a result of chemical reaction. Atmospheric Chemistry and Physics, 2005, 5, 275-291.	1.9	106
427	Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics, 2005, 5, 3289-3311.	1.9	572
428	An Intensive Study of the Size and Composition of Submicron Atmospheric Aerosols at a Rural Site in Ontario, Canada. Aerosol Science and Technology, 2005, 39, 722-736.	1.5	47
429	Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments. Aerosol Science and Technology, 2005, 39, 760-770.	1.5	179
430	Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2005, 39, 1143-1163.	1.5	196
431	A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment. Aerosol Science and Technology, 2005, 39, 637-658	1.5	719
432	Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation. Faraday Discussions, 2005, 130, 327.	1.6	108

#	Article	IF	CITATIONS
433	Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry. Environmental Science & Technology, 2005, 39, 4938-4952.	4.6	617
434	Ozonolysis of Mixed Oleic-Acid/Stearic-Acid Particles:Â Reaction Kinetics and Chemical Morphology. Journal of Physical Chemistry A, 2005, 109, 10910-10919.	1.1	111
435	Comment on "Mass Accommodation Coefficient of Water: Molecular Dynamics Simulation and Revised Analysis of Droplet Train/Flow Reactor Experiment― Journal of Physical Chemistry B, 2005, 109, 14742-14746.	1.2	20
436	Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research, 2005, 110, .	3.3	229
437	Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. Journal of Geophysical Research, 2005, 110, .	3.3	689
438	Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, andm-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environmental Science & Technology, 2005, 39, 5674-5688.	4.6	307
439	Uptake of Organic Gas Phase Species by 1-Methylnaphthalene. Journal of Physical Chemistry A, 2005, 109, 3941-3949.	1.1	4
440	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. Aerosol Science and Technology, 2004, 38, 1206-1222.	1.5	212
441	Measurement of Ambient Aerosol Composition During the PMTACS-NY 2001 Using an Aerosol Mass Spectrometer. Part I: Mass Concentrations Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 92-103.	1.5	99
442	Experimental isotherms of HCl on H[sub 2]O ice under stratospheric conditions: Connections between bulk and interfacial thermodynamics. Journal of Chemical Physics, 2004, 121, 8486.	1.2	18
443	Haze Aerosols in the Atmosphere of Early Earth: Manna from Heaven. Astrobiology, 2004, 4, 409-419.	1.5	61
444	Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. Atmospheric Environment, 2004, 38, 5745-5758.	1.9	384
445	Chase Studies of Particulate Emissions from in-use New York City Vehicles. Aerosol Science and Technology, 2004, 38, 555-573.	1.5	407
446	Comment on "Gas-Phase Flow and Diffusion Analysis of the Droplet-Train/Flow-Reactor Technique for the Mass Accommodation Processâ€â€. Journal of Physical Chemistry A, 2004, 108, 8542-8543.	1.1	8
447	Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens–Nozzle System. Aerosol Science and Technology, 2004, 38, 619-638.	1.5	143
448	Measurement of Ambient Aerosol Composition During the PMTACS-NY 2001 Using an Aerosol Mass Spectrometer. Part II: Chemically Speciated Mass Distributions Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 104-117.	1.5	67
449	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Science and Technology, 2004, 38, 1185-1205.	1.5	811
450	Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on Aerosol Mass Spectrometry. Environmental Science & Technology, 2004, 38, 4797-4809.	4.6	259

#	Article	IF	CITATIONS
451	Comment on "The NH3Mass Accommodation Coefficient for Uptake onto Sulfuric Acid Solution― Journal of Physical Chemistry A, 2004, 108, 8546-8548.	1.1	9
452	Mobile Laboratory with Rapid Response Instruments for Real-Time Measurements of Urban and Regional Trace Gas and Particulate Distributions and Emission Source Characteristics. Environmental Science & Technology, 2004, 38, 5694-5703.	4.6	189
453	Uptake of H217O(g) and D2O(g) by Aqueous Sulfuric Acid Droplets. Journal of Physical Chemistry A, 2004, 108, 1567-1573.	1.1	14
454	Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. Journal of Geophysical Research, 2004, 109, .	3.3	56
455	Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. Journal of Geophysical Research, 2004, 109, .	3.3	144
456	Chemical composition of Titan's haze: Are PAHs present?. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	30
457	Mass accommodation coefficient of water vapor on liquid water. Geophysical Research Letters, 2004, 31, .	1.5	73
458	Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002. Journal of Geophysical Research, 2004, 109, .	3.3	30
459	A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. Journal of Aerosol Science, 2004, 35, 909-922.	1.8	702
460	Products and Mechanisms of Ozone Reactions with Oleic Acid for Aerosol Particles Having Coreâ^'Shell Morphologies. Journal of Physical Chemistry A, 2004, 108, 6686-6695.	1.1	156
461	Online mass spectrometric aerosol measurements during the MINOS campaign (Crete, August 2001). Atmospheric Chemistry and Physics, 2004, 4, 65-80.	1.9	34
462	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. Journal of Geophysical Research, 2003, 108, .	3.3	90
463	Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	801
464	Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	374
465	Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	166
466	Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	107
467	Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysisâ€. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	17
468	Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 2. Measurements of fine particulate chemical composition in two U.K. cities,― Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	3

#	Article	IF	CITATIONS
469	Uptake of Gas-Phase Species by 1-Octanol. 1. Uptake of α-Pinene, γ-Terpinene,p-Cymene, and 2-Methyl-2-hexanol as a Function of Relative Humidity and Temperature. Journal of Physical Chemistry A, 2003, 107, 6388-6397.	1.1	21
470	Uptake of Gas-Phase Species by 1-Octanol. 2. Uptake of Hydrogen Halides and Acetic Acid as a Function of Relative Humidity and Temperature. Journal of Physical Chemistry A, 2003, 107, 6398-6407.	1.1	19
471	Uptake of HCl(g) and HBr(g) on Ethylene Glycol Surfaces as a Function of Relative Humidity and Temperature. Journal of Physical Chemistry A, 2002, 106, 1220-1227.	1.1	28
472	Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique. Geophysical Research Letters, 2002, 29, 71-1-71-4.	1.5	80
473	A chemical kinetic model for reactive transformations of aerosol particles. Geophysical Research Letters, 2002, 29, 57-1-57-4.	1.5	119
474	Ternary H2SO4/HNO3/H2O Optical Constants:Â New Measurements from Aerosol Spectroscopy under Stratospheric Conditions. Journal of Physical Chemistry A, 2002, 106, 6075-6083.	1.1	22
475	Rate Constant for the Reaction of Cl2(aq) with OH Journal of Physical Chemistry A, 2002, 106, 7748-7754.	1.1	12
476	A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle. Aerosol Science and Technology, 2002, 36, 617-631.	1.5	145
477	Kinetic model for reaction of ClONO2with H2O and HCl and HOCl with HCl in sulfuric acid solutions. Journal of Geophysical Research, 2001, 106, 24259-24274.	3.3	87
478	Simultaneous Uptake of DMS and Ozone on Water. Journal of Physical Chemistry A, 2001, 105, 7031-7036.	1.1	51
479	Chemical Kinetics of the NaO (A2Σ+) + O(3P) Reactionâ€. Journal of Physical Chemistry A, 2001, 105, 1643-1648.	1.1	18
480	Mass and Thermal Accommodation Coefficients of H2O(g) on Liquid Water as a Function of Temperature. Journal of Physical Chemistry A, 2001, 105, 10627-10634.	1.1	136
481	Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Science and Technology, 2000, 33, 49-70.	1.5	1,503
482	Uptake of gas-phase SO2in aqueous sulfuric acid: Oxidation by H2O2, O3, and HONO. Journal of Geophysical Research, 2000, 105, 29065-29078.	3.3	26
483	Uptake of Gas-Phase SO2, H2S, and CO2by Aqueous Solutions. Journal of Physical Chemistry A, 2000, 104, 7502-7510.	1.1	73
484	Heterogeneous Interactions of NO2with Aqueous Surfaces. Journal of Physical Chemistry A, 2000, 104, 2655-2662.	1.1	75
485	A Temperature- and Composition-Dependent Study of H2SO4 Aerosol Optical Constants Using Fourier Transform and Tunable Diode Laser Infrared Spectroscopy. Journal of Physical Chemistry A, 1999, 103, 8030-8040.	1.1	64
486	Isotope Exchange for Gas-Phase Acetic Acid and Ethanol at Aqueous Interfaces:Â A Study of Surface Reactions. Journal of Physical Chemistry B, 1999, 103, 2417-2430.	1.2	48

#	Article	IF	CITATIONS
487	Uptake of Gas-Phase Ammonia. 1. Uptake by Aqueous Surfaces as a Function of pH. Journal of Physical Chemistry A, 1999, 103, 8812-8823.	1.1	112
488	Observation of the A2Σ+ ↕X2ΠElectronic Transition of NaO. Journal of Physical Chemistry A, 1999, 103, 3193-3199.	1.1	30
489	Uptake of Gas-Phase Ammonia. 2. Uptake by Sulfuric Acid Surfaces. Journal of Physical Chemistry A, 1999, 103, 8824-8833.	1.1	76
490	Infrared complex refractive indices of supercooled liquid HNO3/H2O aerosols. Journal of Geophysical Research, 1999, 104, 30571-30584.	3.3	31
491	Mass Accommodation Coefficient of H2SO4Vapor on Aqueous Sulfuric Acid Surfaces and Gaseous Diffusion Coefficient of H2SO4in N2/H2O. Journal of Physical Chemistry A, 1998, 102, 10082-10089.	1.1	91
492	Temperature- and Frequency-Dependent Optical Constants for Nitric Acid Dihydrate from Aerosol Spectroscopy. Journal of Physical Chemistry A, 1998, 102, 6477-6484.	1.1	48
493	Temperature- and composition-dependent infrared optical constants for sulfuric acid. Geophysical Research Letters, 1998, 25, 4477-4480.	1.5	17
494	Heterogeneous uptake of HCl by sulfuric acid solutions. Journal of Geophysical Research, 1998, 103, 25371-25381.	3.3	43
495	Solubility data requirements and new experimental methods in atmospheric aerosol research. Pure and Applied Chemistry, 1997, 69, 959-968.	0.9	16
496	Horizontal Bubble Train Apparatus for Heterogeneous Chemistry Studies:Â Uptake of Gas-Phase Formaldehyde. Environmental Science & Technology, 1997, 31, 2634-2641.	4.6	18
497	Pressure and Temperature Dependence of the Gas-Phase Reaction of SO3with H2O and the Heterogeneous Reaction of SO3with H2O/H2SO4Surfaces. Journal of Physical Chemistry A, 1997, 101, 10000-10011.	1.1	144
498	Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3solutions in Antarctic polar stratospheric cloud aerosol: Observations and implications. Journal of Geophysical Research, 1997, 102, 13255-13282.	3.3	54
499	Atmospheric Chemistry and Environmental Impact of Hydrofluorocarbons and Hydrochlorofluorocarbons. ACS Symposium Series, 1997, , 16-30.	0.5	Ο
500	Heterogeneous Atmospheric Chemistry of Alternative Halocarbon Oxidation Intermediates. ACS Symposium Series, 1997, , 50-58.	0.5	0
501	Heterogeneous uptake of ClONO2and N2O5by sulfuric acid solutions. Journal of Geophysical Research, 1997, 102, 3583-3601.	3.3	120
502	Infrared spectroscopy of sulfuric acid/water aerosols: Freezing characteristics. Journal of Geophysical Research, 1997, 102, 8899-8907.	3.3	41
503	Uptake of Gas-Phase Formaldehyde by Aqueous Acid Surfaces. The Journal of Physical Chemistry, 1996, 100, 8015-8022.	2.9	84
504	Correction to "Decomposition of halomethanes on α-Alumina at stratospheric temperaturesâ€. Geophysical Research Letters, 1996, 23, 317-317.	1.5	6

#	Article	IF	CITATIONS
505	Dynamics and Kinetics at the Gasâ^'Liquid Interface. The Journal of Physical Chemistry, 1996, 100, 13007-13020.	2.9	283
506	Comment on "A spectroscopic tour through the liquid aerosol interface: Implications for atmospheric chemistry―by Jian-Xiang Zhang, Denise Aiello, and Pamela M. Aker. Journal of Geophysical Research, 1996, 101, 23039-23043.	3.3	13
507	Comment on "Reply―by P. M. Aker et al Journal of Geophysical Research, 1996, 101, 28863-28866.	3.3	5
508	Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra. The Journal of Physical Chemistry, 1995, 99, 6317-6326.	2.9	144
509	Uptake of Haloacetyl and Carbonyl Halides by Water Surfaces. Environmental Science & Technology, 1995, 29, 1179-1185.	4.6	82
510	Bubble Column Apparatus for Gas-Liquid Heterogeneous Chemistry Studies. Environmental Science & Technology, 1995, 29, 1171-1178.	4.6	17
511	Complex refractive indices in the infrared of nitric acid trihydrate aerosols. Geophysical Research Letters, 1995, 22, 2625-2628.	1.5	45
512	Reactive Uptake of Cl2(g) and Br2(g) by Aqueous Surfaces as a Function of Br- and I- Ion Concentration: The Effect of Chemical Reaction at the Interface. The Journal of Physical Chemistry, 1995, 99, 8768-8776.	2.9	210
513	Metastable Phases in Polar Stratospheric Aerosols. Science, 1995, 267, 351-355.	6.0	64
514	Entry of gas molecules into liquids. Faraday Discussions, 1995, 100, 65.	1.6	112
515	Henry's law solubilities and Åšetchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements. Journal of Geophysical Research, 1995, 100, 7245-7251.	3.3	105
516	Decomposition of halomethanes on α-alumina at stratospheric temperatures. Geophysical Research Letters, 1994, 21, 377-380.	1.5	19
517	Uptake of gas phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. Journal of Geophysical Research, 1994, 99, 16927.	3.3	79
518	Gas Phase Reaction of Sulfur Trioxide with Water Vapor. Journal of the American Chemical Society, 1994, 116, 10314-10315.	6.6	174
519	The environmental impact of CFC replacements - HFCs and HCFCs. Environmental Science & Technology, 1994, 28, 320A-326A.	4.6	85
520	Vapor Pressures of Solid Hydrates of Nitric Acid: Implications for Polar Stratospheric Clouds. Science, 1993, 259, 71-74.	6.0	241
521	Uptake of gas-phase halogenated acetic acid molecules by water surfaces. The Journal of Physical Chemistry, 1993, 97, 11037-11042.	2.9	19
522	Uptake of gas-phase acetone by water surfaces. The Journal of Physical Chemistry, 1993, 97, 2284-2288.	2.9	31

#	Article	IF	CITATIONS
523	Molecular beam chemistry: magnetic deflection analysis of monoxide electronic states from alkali-metal atom + ozone reactions. The Journal of Physical Chemistry, 1993, 97, 2113-2122.	2.9	29
524	<title>Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy</title> . , 1993, 1715, 18.		5
525	Uptake of gas-phase aldehydes by water surfaces. The Journal of Physical Chemistry, 1992, 96, 5452-5460.	2.9	87
526	Low-temperature absolute rate constants for the reaction of atomic sodium with ozone and nitrous oxide. [Erratum to document cited in CA114(22):215502y]. The Journal of Physical Chemistry, 1992, 96, 9088-9088.	2.9	2
527	Tropospheric heterogeneous chemistry of haloacetyl and carbonyl halides. Geophysical Research Letters, 1992, 19, 1939-1942.	1.5	28
528	Excitation mechanism of the mesospheric sodium nightglow. Nature, 1992, 356, 414-416.	13.7	41
529	Uptake of dinitrogen pentoxide and nitric acid by aqueous sulfuric acid droplets. The Journal of Physical Chemistry, 1991, 95, 1684-1689.	2.9	107
530	Low-temperature absolute rate constants for the reaction of atomic sodium with ozone and nitrous oxide. The Journal of Physical Chemistry, 1991, 95, 3960-3964.	2.9	25
531	Uptake of gas-phase alcohol and organic acid molecules by water surfaces. The Journal of Physical Chemistry, 1991, 95, 6329-6336.	2.9	128
532	Uptake of gas molecules by liquids: a model. The Journal of Physical Chemistry, 1991, 95, 6337-6340.	2.9	95
533	Uptake of sulfur dioxide(G) by aqueous surfaces as a function of pH: the effect of chemical reaction at the interface. The Journal of Physical Chemistry, 1990, 94, 6041-6048.	2.9	154
534	Uptake of HCl molecules by aqueous sulfuric acid droplets as a function of acid concentration. Journal of Geophysical Research, 1990, 95, 5631-5638.	3.3	81
535	The effect of H ₂ O ₂ content on the uptake of SO ₂ (g) by aqueous droplets. Journal of Geophysical Research, 1990, 95, 20559-20563.	3.3	28
536	Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)â^'n=2–69. Journal of Chemical Physics, 1990, 92, 3980-3982.	1.2	505
537	Temperature dependence of the uptake coefficients of nitric acid, hydrochloric acid and nitrogen oxide (N2O5) by water droplets. The Journal of Physical Chemistry, 1990, 94, 3265-3269.	2.9	169
538	The temperature dependence of mass accommodation of sulfur dioxide and hydrogen peroxide on aqueous surfaces. The Journal of Physical Chemistry, 1989, 93, 1159-1172.	2.9	239
539	Measurement of the mass accommodation coefficient of SO ₂ (g) on water droplets. Journal of Geophysical Research, 1987, 92, 10887-10895.	3.3	65
540	Molecular beam study of van der Waals bond exchange in collisions of noble gas atoms and dimers. The Journal of Physical Chemistry, 1986, 90, 5121-5130.	2.9	12

#	Article	IF	CITATIONS
541	Absolute photodissociation cross sections of gas phase sodium chloride at room temperature. Journal of Chemical Physics, 1986, 84, 4378-4384.	1.2	25
542	Field detachment of the negatively charged water dimer. Zeitschrift Für Physik A, 1985, 320, 151-153.	1.4	21
543	Clusters of water and ammonia with excess electrons. Surface Science, 1985, 156, 157-164.	0.8	84
544	Penning, Photo and Electron Impact Ionization of Argon Clusters. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1984, 88, 207-211.	0.9	61
545	Experimental observation of the negatively charged water dimer and other small (H2O)â^'n clusters. Journal of Chemical Physics, 1984, 81, 3742-3744.	1.2	234
546	Mass Spectra of Negatively Charged Water and Ammonia Clusters. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1984, 88, 270-272.	0.9	171
547	Negatively charged water clusters: mass spectra of (H2O)n- and (D2O)n The Journal of Physical Chemistry, 1984, 88, 3903-3904.	2.9	115
548	Electron bombardment ionization and fragmentation of van der Waals clusters. The Journal of Physical Chemistry, 1984, 88, 4506-4509.	2.9	37
549	Molecular beam reactive scattering. Exchange of van der Waals bonds in xenon + argon (Ar2) collisions. The Journal of Physical Chemistry, 1981, 85, 3024-3025.	2.9	12
550	Generation of "bastard" molecular ions from van der Waals clusters: Arn(C2Cl4)m+ ions, suspected interlopers in collection of solar neutrinos. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7250-7253.	3.3	2