

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6667406/publications.pdf Version: 2024-02-01

RIN VII

#	Article	IF	CITATIONS
1	Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell, 2018, 174, 521-535.e13.	13.5	165
2	A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron, 2017, 95, 817-833.e4.	3.8	155
3	miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Research, 2012, 40, 10356-10365.	6.5	127
4	Doublecortin-Like Kinases Promote Neuronal Survival and Induce Growth Cone Reformation via Distinct Mechanisms. Neuron, 2015, 88, 704-719.	3.8	104
5	miR-221/222 promote Schwann cell proliferation and migration by targeting LASS2 following sciatic nerve injury. Journal of Cell Science, 2012, 125, 2675-83.	1.2	101
6	Deep Sequencing and Bioinformatic Analysis of Lesioned Sciatic Nerves after Crush Injury. PLoS ONE, 2015, 10, e0143491.	1.1	91
7	The regulatory roles of non-coding RNAs in nerve injury and regeneration. Progress in Neurobiology, 2015, 134, 122-139.	2.8	85
8	miR-9 inhibits Schwann cell migration by targeting CTHRC1 following sciatic nerve injury. Journal of Cell Science, 2014, 127, 967-76.	1.2	62
9	Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neuroscience Letters, 2013, 534, 117-122.	1.0	59
10	Long non oding <scp>RNA</scp> uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. European Journal of Neuroscience, 2015, 42, 1718-1725.	1.2	55
11	Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats. Biochemical and Biophysical Research Communications, 2016, 478, 206-212.	1.0	47
12	Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Molecular Neurobiology, 2016, 53, 5129-5139.	1.9	45
13	lncRNA TNXA-PS1 Modulates Schwann Cells by Functioning As a Competing Endogenous RNA Following Nerve Injury. Journal of Neuroscience, 2018, 38, 6574-6585.	1.7	40
14	miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury. Cell Death and Disease, 2018, 9, 720.	2.7	37
15	Differential Circular RNA Expression Profiles Following Spinal Cord Injury in Rats: A Temporal and Experimental Analysis. Frontiers in Neuroscience, 2019, 13, 1303.	1.4	33
16	Revascularization After Traumatic Spinal Cord Injury. Frontiers in Physiology, 2021, 12, 631500.	1.3	33
17	lncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived β-like cell differentiation by targeting miR-338-3p as a ceRNA. Biomaterials, 2019, 216, 119266.	5.7	29
18	The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 2020, 295, 8374-8386.	1.6	28

Βιν Υυ

#	Article	IF	CITATIONS
19	Role of Long Noncoding RNAs and Circular RNAs in Nerve Regeneration. Frontiers in Molecular Neuroscience, 2019, 12, 165.	1.4	27
20	miR-221-3p Inhibits Schwann Cell Myelination. Neuroscience, 2018, 379, 239-245.	1.1	26
21	miR-30c promotes Schwann cell remyelination following peripheral nerve injury. Neural Regeneration Research, 2017, 12, 1708.	1.6	26
22	Circ-Spidr enhances axon regeneration after peripheral nerve injury. Cell Death and Disease, 2019, 10, 787.	2.7	24
23	A Schwann cell–enriched circular RNA circâ€Ankib1 regulates Schwann cell proliferation following peripheral nerve injury. FASEB Journal, 2019, 33, 12409-12424.	0.2	23
24	Rationally Designed, Selfâ€Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Advanced Healthcare Materials, 2021, 10, e2100242.	3.9	22
25	LncRNA BC088259 promotes Schwann cell migration through Vimentin following peripheral nerve injury. Glia, 2020, 68, 670-679.	2.5	19
26	The Landscape of Gene Expression and Molecular Regulation Following Spinal Cord Hemisection in Rats. Frontiers in Molecular Neuroscience, 2019, 12, 287.	1.4	17
27	Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Experimental Neurology, 2018, 308, 80-89.	2.0	15
28	Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Frontiers of Medicine, 2019, 13, 131-137.	1.5	14
29	CircRNA_01477 influences axonal growth via regulating miR-3075/FosB/Stat3 axis. Experimental Neurology, 2022, 347, 113905.	2.0	12
30	Loc680254 regulates Schwann cell proliferation through Psrc1 and Ska1 as a <scp>microRNA</scp> sponge following sciatic nerve injury. Glia, 2021, 69, 2391-2403.	2.5	11
31	Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Experimental Neurology, 2021, 343, 113788.	2.0	10
32	RSK1 promotes mammalian axon regeneration by inducing the synthesis of regeneration-related proteins. PLoS Biology, 2022, 20, e3001653.	2.6	9
33	Singleâ€cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. FASEB Journal, 2022, 36, .	0.2	9
34	miR-20a Promotes the Axon Regeneration of DRG Neurons by Targeting Nr4a3. Neuroscience Bulletin, 2021, 37, 569-574.	1.5	8
35	Profile of the RNA in exosomes from astrocytes and microglia using deep sequencing: implications for neurodegeneration mechanisms. Neural Regeneration Research, 2022, 17, 608.	1.6	8
36	Identification of key genes involved in axon regeneration and Wallerian degeneration by weighted gene co-expression network analysis. Neural Regeneration Research, 2022, 17, 911.	1.6	8

Вім Уи

#	Article	IF	CITATIONS
37	Expression and regulatory network of long noncoding RNA in rats after spinal cord hemisection injury. Neural Regeneration Research, 2022, 17, 2300.	1.6	5
38	A comparative analysis of differentially expressed genes in rostral and caudal regions after spinal cord injury in rats. Neural Regeneration Research, 2022, 17, 2267.	1.6	5
39	The metabolomic profiling identifies N, Nâ€dimethylglycine as a facilitator of dorsal root ganglia neuron axon regeneration after injury. FASEB Journal, 2022, 36, e22305.	0.2	5
40	Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Experimental Neurology, 2022, 352, 114025.	2.0	5