
Guang-Kui Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directional snapping instability in a bistable tensegrity under uniaxial loads. Composite Structures, 2022, 283, 115153.	5.8	4
2	A Bionicâ€Homodimerization Strategy for Optimizing Modulators of Protein–Protein Interactions: From Statistical Mechanics Theory to Potential Clinical Translation. Advanced Science, 2022, 9, e2105179.	11.2	16
3	Cell chirality regulates coherent angular motion onÂsmall circular substrates. Biophysical Journal, 2022, 121, 1931-1939.	0.5	5
4	A tensegrity-based morphing module for assembling various deployable structures. Mechanism and Machine Theory, 2022, 173, 104870.	4.5	5
5	Frequency-dependent transition in power-law rheological behavior of living cells. Science Advances, 2022, 8, eabn6093.	10.3	22
6	Static and dynamic mechanics of cell monolayers: A multi-scale structural model. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	6
7	Stiffening and softening in the power-law rheological behaviors of cells. Journal of the Mechanics and Physics of Solids, 2022, 167, 104989.	4.8	4
8	Why are isolated and collective cells greatly different in stiffness?. Journal of the Mechanics and Physics of Solids, 2021, 147, 104280.	4.8	13
9	Multilevel structural defects-induced elastic wave tunability and localization of a tensegrity metamaterial. Composites Science and Technology, 2021, 207, 108740.	7.8	22
10	A finite-strain micromechanical model for the hyperelasticity of tendons and ligaments with crimped fibers. Mechanics of Materials, 2021, 160, 103955.	3.2	4
11	Self-equilibrium and super-stability of rhombic truncated regular tetrahedral and cubic tensegrities using symmetry-adapted force-density matrix method. International Journal of Solids and Structures, 2021, 233, 111215.	2.7	4
12	A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells. Nature Communications, 2021, 12, 6067.	12.8	32
13	Truncated regular octahedral tensegrity-based mechanical metamaterial with tunable and programmable Poisson's ratio. International Journal of Mechanical Sciences, 2020, 167, 105285.	6.7	25
14	Constructing various simple polygonal tensegrities by directly or recursively adding bars. Composite Structures, 2020, 234, 111693.	5.8	8
15	Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Physical Review E, 2020, 102, 012405.	2.1	8
16	Rotational constraint contributes to collective cell durotaxis. Applied Physics Letters, 2020, 117, .	3.3	4
17	Stochastic fluctuation-induced cell polarization on elastic substrates: A cytoskeleton-based mechanical model. Journal of the Mechanics and Physics of Solids, 2020, 137, 103872.	4.8	23
18	Bandgap characteristics of a tensegrity metamaterial chain with defects. Extreme Mechanics Letters, 2020, 36, 100668.	4.1	14

GUANG-KUI XU

#	Article	IF	CITATIONS
19	Stress-driven cell extrusion can maintain homeostatic cell density in response to overcrowding. Soft Matter, 2019, 15, 8441-8449.	2.7	10
20	Enumeration–screening method for the design of simple polygonal tensegrities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180812.	2.1	2
21	Unusual Sonochemical Assembly between Carbon Allotropes for High Strain-Tolerant Conductive Nanocomposites. ACS Nano, 2019, 13, 12062-12069.	14.6	2
22	Size-Dependent Mechanics of the Adherens Junction Mediated by Cooperative trans and cis Bindings. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	2
23	Analytical Form-Finding for Highly Symmetric and Super-Stable Configurations of Rhombic Truncated Regular Polyhedral Tensegrities. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	9
24	Three-dimensional collective cell motions in an acinus-like lumen. Journal of Biomechanics, 2019, 84, 234-242.	2.1	7
25	Analytical form-finding of tensegrities using determinant of force-density matrix. Composite Structures, 2018, 189, 87-98.	5.8	34
26	Non-contact tensile viscoelastic characterization of microscale biological materials. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 589-599.	3.4	13
27	Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal, 2018, 114, 701-710.	0.5	35
28	Automatically assembled large-scale tensegrities by truncated regular polyhedral and prismatic elementary cells. Composite Structures, 2018, 184, 30-40.	5.8	24
29	Dynamic Migration Modes of Collective Cells. Biophysical Journal, 2018, 115, 1826-1835.	0.5	63
30	Are elastic moduli of biological cells depth dependent or not? Another explanation using a contact mechanics model with surface tension. Soft Matter, 2018, 14, 7534-7541.	2.7	48
31	Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds. Journal of the Mechanics and Physics of Solids, 2017, 101, 197-208.	4.8	36
32	A Dynamic Biochemomechanical Model of Geometry-Confined Cell Spreading. Biophysical Journal, 2017, 112, 2377-2386.	0.5	14
33	On the determination of elastic moduli of cells by AFM based indentation. Scientific Reports, 2017, 7, 45575.	3.3	90
34	Impact of lipid rafts on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>T</mml:mi></mml:mrow>and peptide-major-histocompatibility-complex interactions under different measurement conditions. Physical Review E, 2017, 95, 012403.</mml:math 	nath}-cell	receptor
35	Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. Journal of Biomechanics, 2017, 52, 140-147.	2.1	30
36	Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability. ACS Nano, 2017, 11, 721-729.	14.6	98

GUANG-KUI XU

#	Article	IF	CITATIONS
37	Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance. ACS Nano, 2016, 10, 4695-4703.	14.6	81
38	The glycocalyx promotes cooperative binding and clustering of adhesion receptors. Soft Matter, 2016, 12, 4572-4583.	2.7	31
39	A Tensegrity Model of Cell Reorientation on Cyclically Stretched Substrates. Biophysical Journal, 2016, 111, 1478-1486.	0.5	65
40	Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands. Physical Review E, 2016, 93, 032411.	2.1	4
41	Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory. Cell Adhesion and Migration, 2016, 10, 576-589.	2.7	29
42	Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch. Journal of Biomechanics, 2016, 49, 401-407.	2.1	20
43	Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory. Journal of Chemical Physics, 2015, 143, 243137.	3.0	27
44	Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations. Journal of Chemical Physics, 2015, 143, 243136.	3.0	54
45	Negative stiffness behaviors emerging in elastic instabilities of prismatic tensegrities under torsional loading. International Journal of Mechanical Sciences, 2015, 103, 189-198.	6.7	26
46	How do changes at the cell level affect the mechanical properties of epithelial monolayers?. Soft Matter, 2015, 11, 8782-8788.	2.7	28
47	Integrin activation and internalization mediated by extracellular matrix elasticity: A biomechanical model. Journal of Biomechanics, 2014, 47, 1479-1484.	2.1	31
48	Effects of interface cohesion on mechanical properties of interpenetrating phase nanocomposites. Micro and Nano Letters, 2014, 9, 697-701.	1.3	5
49	Mechanical properties and scaling laws of nanoporous gold. Journal of Applied Physics, 2013, 113, .	2.5	171
50	Tissue–Growth Model for the Swelling Analysis of Core–Shell Hydrogels. Soft Materials, 2013, 11, 117-124.	1.7	10
51	Controlled Release and Assembly of Drug Nanoparticles via pH-Responsive Polymeric Micelles: A Theoretical Study. Journal of Physical Chemistry B, 2012, 116, 6003-6009.	2.6	18
52	Self-assembly of organic–inorganic nanocomposites with nacre-like hierarchical structures. Soft Matter, 2011, 7, 4828.	2.7	19
53	Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites. Nano Research, 2010, 3, 356-362.	10.4	21
54	A molecular mechanisms-based biophysical model for two-phase cell spreading. Applied Physics Letters. 2010. 96. 043703.	3.3	21

Guang-Kui Xu

#	Article	IF	CITATIONS
55	Self-Assembled Nanostructures of Homopolymer and Diblock Copolymer Blends in a Selective Solvent. Journal of Physical Chemistry B, 2010, 114, 1257-1263.	2.6	24
56	Theoretical study of the competition between cell-cell and cell-matrix adhesions. Physical Review E, 2009, 80, 011921.	2.1	20
57	Surface patterning of soft polymer film-coated cylinders via an electric field. Journal of Physics Condensed Matter, 2009, 21, 445006.	1.8	15
58	Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matter, 2009, 5, 3977.	2.7	19