
Brian R Belland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666727/publications.pdf Version: 2024-02-01

RDIAN P RELIAND

#	Article	IF	CITATIONS
1	Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet and Higher Education, 2014, 20, 35-50.	4.2	522
2	A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distance Learning, 2013, 14, 16.	1.0	266
3	Synthesizing Results From Empirical Research on Computer-Based Scaffolding in STEM Education. Review of Educational Research, 2017, 87, 309-344.	4.3	178
4	A Framework for Designing Scaffolds That Improve Motivation and Cognition. Educational Psychologist, 2013, 48, 243-270.	4.7	176
5	Using Peer Feedback to Enhance the Quality of Student Online Postings: An Exploratory Study. Journal of Computer-Mediated Communication, 2007, 12, 412-433.	1.7	161
6	Using the theory of habitus to move beyond the study of barriers to technology integration. Computers and Education, 2009, 52, 353-364.	5.1	133
7	A scaffolding framework to support the construction of evidence-based arguments among middle school students. Educational Technology Research and Development, 2008, 56, 401-422.	2.0	112
8	Scaffolding: Definition, Current Debates, and Future Directions. , 2014, , 505-518.		112
9	Effectiveness of Computer-Based Scaffolding in the Context of Problem-Based Learning for Stem Education: Bayesian Meta-analysis. Educational Psychology Review, 2018, 30, 397-429.	5.1	85
10	Problem-based learning and argumentation: testing a scaffolding framework to support middle school students' creation of evidence-based arguments. Instructional Science, 2011, 39, 667-694.	1.1	80
11	Portraits of middle school students constructing evidence-based arguments during problem-based learning: the impact of computer-based scaffolds. Educational Technology Research and Development, 2010, 58, 285-309.	2.0	71
12	A case study of integrating Interwise: Interaction, internet self-efficacy, and satisfaction in synchronous online learning environments. International Review of Research in Open and Distance Learning, 2014, 15, .	1.0	71
13	Instructional Scaffolding in STEM Education. , 2017, , .		67
14	Validity and Problem-Based Learning Research: A Review of Instruments Used to Assess Intended Learning Outcomes. Interdisciplinary Journal of Problem-based Learning, 2009, 3, .	0.2	66
15	K-12 teachers' perceptions of and their satisfaction with interaction type in blended learning environments. Distance Education, 2014, 35, 360-381.	2.5	59
16	An exploratory study of adult learners' perceptions of online learning: Minority students in continuing education. Educational Technology Research and Development, 2016, 64, 661-680.	2.0	46
17	Distributed Cognition as a Lens to Understand the Effects of Scaffolds: The Role of Transfer of Responsibility. Educational Psychology Review, 2011, 23, 577-600.	5.1	40
18	A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction. Journal of Science Education and Technology, 2012, 21, 465-475.	2.4	32

BRIAN R BELLAND

#	Article	IF	CITATIONS
19	Perceptions of the Value of Problem-based Learning among Students with Special Needs and Their Teachers. Interdisciplinary Journal of Problem-based Learning, 2006, 1, .	0.2	32
20	A Bayesian Network Meta-Analysis to Synthesize the Influence of Contexts of Scaffolding Use on Cognitive Outcomes in STEM Education. Review of Educational Research, 2017, 87, 1042-1081.	4.3	29
21	Scaffolding argumentation about water quality: a mixed-method study in a rural middle school. Educational Technology Research and Development, 2015, 63, 325-353.	2.0	28
22	Toward a framework on how affordances and motives can drive different uses of scaffolds: theory, evidence, and design implications. Educational Technology Research and Development, 2013, 61, 903-925.	2.0	27
23	Inclusion and Problem-Based Learning: Roles of Students in a Mixed-Ability Group. RMLE Online, 2009, 32, 1-19.	0.9	25
24	A Blended Professional Development Program to Help a Teacher Learn to Provide One-to-One Scaffolding. Journal of Science Teacher Education, 2015, 26, 263-289.	1.4	23
25	Computer-Based Scaffolding Targeting Individual Versus Groups in Problem-Centered Instruction for STEM Education: Meta-analysis. Educational Psychology Review, 2020, 32, 415-461.	5.1	23
26	Influence of Scaffolding on Information Literacy and Argumentation Skills in Virtual Field Trips and Problem-Based Learning for Scientific Problem Solving. International Journal of Science and Mathematics Education, 2022, 20, 215-236.	1.5	19
27	Exploring the relationship between African American adult learners' computer, Internet, and academic self-efficacy, and attitude variables in technology-supported environments. Journal of Computing in Higher Education, 2019, 31, 626-642.	3.9	15
28	Preparing Students with 21st Century Skills: Integrating Scientific Knowledge, Skills, and Epistemic Beliefs in Middle School Science Curricula. , 2015, , 39-60.		13
29	Instructional Scaffolding: Foundations and Evolving Definition. , 2017, , 17-53.		12
30	An ethnomethodological perspective on how middle school students addressed a water quality problem. Educational Technology Research and Development, 2016, 64, 1135-1161.	2.0	8
31	The Role of Construct Definition in the Creation of Formative Assessments in Game-Based Learning. , 2012, , 29-42.		8
32	Habitus, Scaffolding, and Problem-Based Learning: Why Teachers' Experiences as Students Matter. , 2012, , 87-100.		7
33	Exploring epistemological approaches and beliefs of middle school students in problem-based learning. Journal of Educational Research, 2019, 112, 643-655.	0.8	7
34	Problem-Centered Supplemental Instruction in Biology: Influence on Content Recall, Content Understanding, and Problem Solving Ability. Journal of Science Education and Technology, 2017, 26, 383-393.	2.4	6
35	PBL Group Autonomy in a High School Environmental Science Class. Technology, Knowledge and Learning, 2018, 23, 83-107.	3.1	6
36	An Examination of Credit Recovery Students' Use of Computer-Based Scaffolding in a Problem-Based, Scientific Inquiry Unit. International Journal of Science and Mathematics Education, 2019, 17, 273-293.	1.5	6

BRIAN R BELLAND

#	Article	IF	CITATIONS
37	Debugging behaviors of early childhood teacher candidates with or without scaffolding. International Journal of Educational Technology in Higher Education, 2022, 19, .	4.5	6
38	An Ethnomethodological Study of Abductive Reasoning While Tinkering. AERA Open, 2021, 7, 233285842110081.	1.3	4
39	Transforming Schools Using Project-Based Learning, Performance Assessment, and Common Core Standards. Interdisciplinary Journal of Problem-based Learning, 2016, 10, .	0.2	4
40	High school students' agentic responses to modeling during problem-based learning. Journal of Educational Research, 2020, 113, 374-383.	0.8	3
41	What Else (Besides the Syllabus) Should Students Learn in Introductory Physics?. AIP Conference Proceedings, 2009, , .	0.3	2
42	The Role of Affordances and Motives in Explaining How and Why Students Use Computer-based Scaffolds. , 2011, , .		2
43	Understanding Criticism and Problem-Based Learning: An Introduction. , 2012, , 1-10.		2
44	Predicting high school students' argumentation skill using information literacy and trace data. Journal of Educational Research, 2021, 114, 211-221.	0.8	2
45	Conclusion: Building on the Strengths of Interdisciplinarity. , 2012, , 245-248.		1
46	Our Students Deserve the Very Best!. TechTrends, 2013, 57, 6-7.	1.4	1
47	Using Process and Motivation Data to Predict the Quality With Which Preservice Teachers Debugged Higher and Lower Complexity Programs. IEEE Transactions on Education, 2021, , 1-9.	2.0	1
48	Developing My Perspectives on Scaffolding and Problem-Based Learning: A Retrospective View. Interdisciplinary Journal of Problem-based Learning, 2016, 10, .	0.2	1
49	Intended Learning Outcomes and Assessment of Computer-Based Scaffolding. , 2017, , 79-106.		0