Hadi Tavakoli Dastjerdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666547/publications.pdf

Version: 2024-02-01

22 papers 611 citations

687220 13 h-index 18 g-index

22 all docs 22 docs citations

times ranked

22

1047 citing authors

#	Article	IF	CITATIONS
1	Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources. Scientific Reports, 2015, 5, 8332.	1.6	177
2	Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. Journal of Materials Chemistry A, 2019, 7, 14753-14760.	5.2	67
3	Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies. Advanced Functional Materials, 2021, 31, 2010623.	7.8	44
4	Oxygen Plasma-Induced p-Type Doping Improves Performance and Stability of PbS Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 26047-26052.	4.0	33
5	Interpretation of Resistance, Capacitance, Defect Density, and Activation Energy Levels in Single-Crystalline MAPbl ₃ . Journal of Physical Chemistry C, 2020, 124, 3496-3502.	1.5	33
6	Light Management in Organic Photovoltaics Processed in Ambient Conditions Using ZnO Nanowire and Antireflection Layer with Nanocone Array. Small, 2019, 15, e1900508.	5.2	31
7	An electrically injected rolled-up semiconductor tube laser. Applied Physics Letters, 2015, 106, .	1.5	30
8	Three-fold Symmetric Doping Mechanism in GaAs Nanowires. Nano Letters, 2017, 17, 5875-5882.	4. 5	29
9	Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA) <i>_x</i> (MA) _{1–<i>x</i>} Pbl ₃ -Based Perovskite Solar Cells. ACS Omega, 2019, 4, 16840-16846.	1.6	25
10	Methods of Ga droplet consumption for improved GaAs nanowire solar cell efficiency. Nanotechnology, 2016, 27, 475403.	1.3	24
11	Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 818-825.	4.0	23
12	Tuning Areal Density and Surface Passivation of ZnO Nanowire Array Enable Efficient PbS QDs Solar Cells with Enhanced Current Density. Advanced Materials Interfaces, 2020, 7, 1901551.	1.9	22
13	Luminescence down-shifting enables UV-stable and efficient ZnO nanowire-based PbS quantum dot solar cells with <i>J</i> _{SC} exceeding 33 mA cm ^{â^2} . Sustainable Energy and Fuels, 2019, 3, 3128-3134.	2.5	18
14	Optically pumped rolled-up InAs/InGaAsP quantum dash lasers at room temperature. Semiconductor Science and Technology, 2013, 28, 094007.	1.0	13
15	Characterization of azimuthal and longitudinal modes in rolled-up InGaAs/GaAs microtubes at telecom wavelengths. Optics Express, 2013, 21, 18909.	1.7	12
16	Thermally controlled coupling of a rolled-up microtube integrated with a waveguide on a silicon electronic-photonic integrated circuit. Optics Letters, 2014, 39, 2699.	1.7	11
17	Rolled-up SiO \times /SiN \times microtubes with an enhanced quality factor for sensitive solvent sensing. Nanotechnology, 2018, 29, 415501.	1.3	11
18	Synergistic ligand exchange and UV curing of PbS quantum dots for effective surface passivation. Nanoscale, 2019, 11, 22832-22840.	2.8	8

#	Article	IF	CITATIONS
19	(Invited) Rolled-up 1.55 Âm Semiconductor Quantum Dot Tube Lasers. ECS Transactions, 2012, 45, 113-118.	0.3	O
20	Rolled-up 1.5 $\$$ #x00B5;m InAs quantum dot tube lasers and integrated nanophotonic circuits on Si. , 2013, , .		0
21	Coherent emission from electrically-injected InP/InGaAsP rolled up quantum well microtubes. , 2014, , .		O
22	Rolled-up semiconductor tube lasers and lasers based on two-dimensional atomic crystals., 2015,,.		0