
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666210/publications.pdf Version: 2024-02-01

LULIEN CACNELLR

#	Article	IF	CITATIONS
1	Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data. Nature Biotechnology, 2022, 40, 741-750.	9.4	7
2	Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Medicine, 2022, 14, 38.	3.6	85
3	Detection of aberrant splicing events in RNA-seq data using FRASER. Nature Communications, 2021, 12, 529.	5.8	78
4	Detection of aberrant gene expression events in RNA sequencing data. Nature Protocols, 2021, 16, 1276-1296.	5.5	58
5	Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. Journal of Clinical Investigation, 2021, 131, .	3.9	87
6	Base-resolution models of transcription-factor binding reveal soft motif syntax. Nature Genetics, 2021, 53, 354-366.	9.4	325
7	MTSplice predicts effects of genetic variants on tissue-specific splicing. Genome Biology, 2021, 22, 94.	3.8	23
8	Predicting mean ribosome load for 5'UTR of any length using deep learning. PLoS Computational Biology, 2021, 17, e1008982.	1.5	17
9	Assessing predictions of the impact of variants on splicing in CAGI5. Human Mutation, 2019, 40, 1215-1224.	1.1	18
10	Global donor and acceptor splicing site kinetics in human cells. ELife, 2019, 8, .	2.8	51
11	Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Developmental Cell, 2019, 51, 632-644.e6.	3.1	50
12	The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. Nature Biotechnology, 2019, 37, 592-600.	9.4	118
13	CAGI 5 splicing challenge: Improved exon skipping and intron retention predictions with MMSplice. Human Mutation, 2019, 40, 1243-1251.	1.1	10
14	Quantification and discovery of sequence determinants of proteinâ€perâ€mRNA amount inÂ29Âhuman tissues. Molecular Systems Biology, 2019, 15, e8513.	3.2	63
15	MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biology, 2019, 20, 48.	3.8	140
16	Deep learning: new computational modelling techniques for genomics. Nature Reviews Genetics, 2019, 20, 389-403.	7.7	717
17	A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Molecular Systems Biology, 2019, 15, e8503.	3.2	576
18	Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks. Bioinformatics, 2018, 34, 1261-1269.	1.8	29

#	Article	IF	CITATIONS
19	Somatic alterations compromised molecular diagnosis of DOCK8 hyper-IgE syndrome caused by a novel intronic splice site mutation. Scientific Reports, 2018, 8, 16719.	1.6	5
20	OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA Sequencing Data. American Journal of Human Genetics, 2018, 103, 907-917.	2.6	112
21	OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS ONE, 2018, 13, e0199938.	1.1	55
22	Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in Drosophila. ELife, 2018, 7, .	2.8	21
23	GenoGAM 2.0: scalable and efficient implementation of genome-wide generalized additive models for gigabase-scale genomes. BMC Bioinformatics, 2018, 19, 247.	1.2	1
24	Bioinformatics advances biology and medicine by turning big data troves into knowledge. Informatik-Spektrum, 2017, 40, 153-160.	1.0	2
25	Genetic diagnosis of Mendelian disorders via RNA sequencing. Nature Communications, 2017, 8, 15824.	5.8	432
26	Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nature Genetics, 2017, 49, 742-752.	9.4	87
27	GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis. Bioinformatics, 2017, 33, 2258-2265.	1.8	9
28	∏â€seq captures enhancer landscapes immediately after T ell stimulation. Molecular Systems Biology, 2017, 13, 920.	3.2	44
29	Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy. American Journal of Human Genetics, 2017, 100, 151-159.	2.6	63
30	<i>Cis</i> -regulatory elements explain most of the mRNA stability variation across genes in yeast. Rna, 2017, 23, 1648-1659.	1.6	63
31	<i>Caenorhabditis elegans</i> CES-1 Snail Represses <i>pig-1</i> MELK Expression To Control Asymmetric Cell Division. Genetics, 2017, 206, 2069-2084.	1.2	13
32	Measures of RNA metabolism rates: Toward a definition at the level of single bonds. Transcription, 2017, 8, 75-80.	1.7	8
33	Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN. PLoS ONE, 2017, 12, e0169249.	1.1	73
34	Meiotic Interactors of a Mitotic Gene <i>TAO3</i> Revealed by Functional Analysis of its Rare Variant. G3: Genes, Genomes, Genetics, 2016, 6, 2255-2263.	0.8	5
35	Determinants of <scp>RNA</scp> metabolism in the <i>Schizosaccharomyces pombe</i> genome. Molecular Systems Biology, 2016, 12, 857.	3.2	81
36	TT-seq maps the human transient transcriptome. Science, 2016, 352, 1225-1228.	6.0	384

#	Article	IF	CITATIONS
37	Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model. Nucleic Acids Research, 2016, 44, e44-e44.	6.5	4
38	Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype. PLoS Genetics, 2015, 11, e1005195.	1.5	17
39	Negative feedback buffers effects of regulatory variants. Molecular Systems Biology, 2015, 11, 785.	3.2	33
40	Biallelic Mutations in NBAS Cause Recurrent Acute Liver Failure with Onset in Infancy. American Journal of Human Genetics, 2015, 97, 163-169.	2.6	110
41	Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle. Molecular Systems Biology, 2014, 10, 768.	3.2	21
42	An Evaluation of High-Throughput Approaches to QTL Mapping in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 196, 853-865.	1.2	86
43	Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nature Communications, 2014, 5, 5585.	5.8	29
44	Yeast Growth Plasticity Is Regulated by Environment-Specific Multi-QTL Interactions. G3: Genes, Genomes, Genetics, 2014, 4, 769-777.	0.8	34
45	Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics, 2013, 14, 90.	1.2	47
46	Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis. Cell, 2013, 155, 1075-1087.	13.5	201
47	Genotype-Environment Interactions Reveal Causal Pathways That Mediate Genetic Effects on Phenotype. PLoS Genetics, 2013, 9, e1003803.	1.5	72
48	The Genomic and Transcriptomic Landscape of a HeLa Cell Line. G3: Genes, Genomes, Genetics, 2013, 3, 1213-1224.	0.8	355
49	Experimental Relocation of the Mitochondrial ATP9 Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution. PLoS Genetics, 2012, 8, e1002876.	1.5	48
50	Selective Phenotyping, Entropy Reduction, and the Mastermind game. BMC Bioinformatics, 2011, 12, 406.	1.2	15
51	Model-based gene set analysis for Bioconductor. Bioinformatics, 2011, 27, 1882-1883.	1.8	56
52	Antisense expression increases gene expression variability and locus interdependency. Molecular Systems Biology, 2011, 7, 468.	3.2	173
53	A yeast-based assay identifies drugs active against human mitochondrial disorders. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11989-11994.	3.3	73
54	GOing Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Research, 2010, 38, 3523-3532.	6.5	190

#	Article	IF	CITATIONS
55	Genomeâ€wide allele―and strandâ€specific expression profiling. Molecular Systems Biology, 2009, 5, 274.	3.2	31
56	Bidirectional promoters generate pervasive transcription in yeast. Nature, 2009, 457, 1033-1037.	13.7	872
57	Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature, 2009, 462, 65-70.	13.7	361
58	Dissecting the Genetic Basis of Resistance to Malaria Parasites in <i>Anopheles gambiae</i> . Science, 2009, 326, 147-150.	6.0	106
59	Identification of mitochondrial disease genes through integrative analysis of multiple datasets. Methods, 2008, 46, 248-255.	1.9	10
60	Dynamic Regulation by Polycomb Group Protein Complexes Controls Pattern Formation and the Cell Cycle in Drosophila. Developmental Cell, 2008, 15, 877-889.	3.1	178
61	4DXpress: a database for cross-species expression pattern comparisons. Nucleic Acids Research, 2007, 36, D847-D853.	6.5	33
62	Capturing cellular machines by systematic screens of protein complexes. Trends in Microbiology, 2006, 14, 336-339.	3.5	10
63	Assessing Systems Properties of Yeast Mitochondria through an Interaction Map of the Organelle. PLoS Genetics, 2006, 2, e170.	1.5	67
64	From molecular networks to qualitative cell behavior. FEBS Letters, 2005, 579, 1867-1871.	1.3	31
65	A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biology, 2004, 6, 97-105.	4.6	970
66	Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics, 2004, 5, 175.	1.2	207
67	Modular decomposition of protein-protein interaction networks. Genome Biology, 2004, 5, R57.	13.9	100
68	Hierarchical analysis of dependency in metabolic networks. Bioinformatics, 2003, 19, 1027-1034.	1.8	56