Andrey Morgun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666088/publications.pdf

Version: 2024-02-01

22 papers

3,470 citations

430874 18 h-index 677142 22 g-index

26 all docs

26 docs citations

times ranked

26

4409 citing authors

#	Article	IF	CITATIONS
1	Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nature Medicine, 2022, 28, 545-556.	30.7	167
2	Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by $\langle i \rangle Mmp12 \langle i \rangle + macrophages$. Journal of Experimental Medicine, 2022, 219, .	8.5	24
3	Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nature Communications, 2021, 12, 101.	12.8	86
4	Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science, 2021, 371, 595-602.	12.6	746
5	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	12.6	369
6	Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.	6.1	954
7	Gut-resident CX3CR1 ^{hi} macrophages induce tertiary lymphoid structures and IgA response in situ. Science Immunology, 2020, 5, .	11.9	63
8	Dietary Indole-3-Carbinol Activates AhR in the Gut, Alters Th17-Microbe Interactions, and Exacerbates Insulitis in NOD Mice. Frontiers in Immunology, 2020, 11, 606441.	4.8	19
9	Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 2018, 10, .	12.4	121
10	CVID enteropathy is characterized by exceeding low mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. Clinical Immunology, 2018, 197, 139-153.	3.2	66
11	Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host–Microbiota Interactions. Methods in Molecular Biology, 2018, 1849, 227-242.	0.9	23
12	Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ, 2018, 6, e5590.	2.0	24
13	Interplay between viruses and bacterial microbiota in cancer development. Seminars in Immunology, 2017, 32, 14-24.	5.6	35
14	Multi-omics Comparative Analysis Reveals Multiple Layers of Host Signaling Pathway Regulation by the Gut Microbiota. MSystems, 2017, 2, .	3.8	19
15	Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice. Frontiers in Microbiology, 2017, 8, 2306.	3.5	103
16	Akkermansia muciniphila mediates negative effects of IFN \hat{I}^3 on glucose metabolism. Nature Communications, 2016, 7, 13329.	12.8	232
17	Unexpected links reflect the noise in networks. Biology Direct, 2016, 11, 52.	4.6	35
18	Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 2016, 7, 126-135.	9.8	38

Andrey Morgun

#	Article	IF	CITATION
19	Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research, 2016, 5, 2740.	1.6	8
20	Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists. Bioinformatics and Biology Insights, 2015, 9, BBI.S12467.	2.0	38
21	Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut, 2015, 64, 1732-1743.	12.1	261
22	Ménage à trois: an evolutionary interplay between human papillomavirus, a tumor, and a woman. Trends in Microbiology, 2014, 22, 345-353.	7.7	36