George A Dosreis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RANK Ligand Helps Immunity to Leishmania major by Skewing M2-Like Into M1 Macrophages. Frontiers in Immunology, 2020, 11, 886.	2.2	9
2	Involvement of the capsular GalXM-induced IL-17 cytokine in the control of Cryptococcus neoformans infection. Scientific Reports, 2018, 8, 16378.	1.6	15
3	Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Frontiers in Immunology, 2018, 9, 1569.	2.2	17
4	Antibody Repertoires Identify β-Tubulin as a Host Protective Parasite Antigen in Mice Infected With Trypanosoma cruzi. Frontiers in Immunology, 2018, 9, 671.	2.2	10
5	All-Trans Retinoic Acid Promotes an M1- to M2-Phenotype Shift and Inhibits Macrophage-Mediated Immunity to Leishmania major. Frontiers in Immunology, 2017, 8, 1560.	2.2	61
6	Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection. Cell Death and Disease, 2016, 7, e2232-e2232.	2.7	20
7	Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill <i>Leishmania amazonensis</i> Parasites. Journal of Immunology, 2016, 196, 1865-1873.	0.4	21
8	Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Scientific Reports, 2015, 5, 8008.	1.6	110
9	The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection. PLoS ONE, 2015, 10, e0124888.	1.1	39
10	Infection with Leishmania major Induces a Cellular Stress Response in Macrophages. PLoS ONE, 2014, 9, e85715.	1.1	39
11	Neutrophils Increase or Reduce Parasite Burden in Trypanosoma cruzi-Infected Macrophages, Depending on Host Strain: Role of Neutrophil Elastase. PLoS ONE, 2014, 9, e90582.	1.1	35
12	Innate Immunity to <i>Leishmania</i> Infection: Within Phagocytes. Mediators of Inflammation, 2014, 2014, 1-7.	1.4	27
13	Inhibition of caspase-8 activity promotes protective Th1- and Th2-mediated immunity to Leishmania major infection. Journal of Leukocyte Biology, 2014, 95, 347-355.	1.5	12
14	Inhibitory Effects of Trypanosoma cruzi Sialoglycoproteins on CD4+ T Cells Are Associated with Increased Susceptibility to Infection. PLoS ONE, 2013, 8, e77568.	1.1	22
15	<i>Lutzomyia longipalpis</i> saliva drives apoptosis and enhances parasite burden in neutrophils. Journal of Leukocyte Biology, 2011, 90, 575-582.	1.5	55
16	Evasion of immune responses by Trypanosoma cruzi, the etiological agent of Chagas disease. Brazilian Journal of Medical and Biological Research, 2011, 44, 84-90.	0.7	38
17	Macrophages and neutrophils cooperate in immune responses to Leishmania infection. Cellular and Molecular Life Sciences, 2011, 68, 1863-1870.	2.4	12
18	Myeloid-derived suppressor cells help protective immunity to <i>Leishmania major</i> infection despite suppressed T cell responses. Journal of Leukocyte Biology, 2011, 90, 1191-1197.	1.5	53

#	Article	IF	CITATIONS
19	Host Cell Lipid Bodies Triggered by Trypanosoma cruzi Infection and Enhanced by the Uptake of Apoptotic Cells Are Associated With Prostaglandin E2 Generation and Increased Parasite Growth. Journal of Infectious Diseases, 2011, 204, 951-961.	1.9	113
20	Apoptotic lymphocytes treated with IgG from <i>Trypanosoma cruzi</i> infection increase TNFâ€Î± secretion and reduce parasite replication in macrophages. European Journal of Immunology, 2010, 40, 417-425.	1.6	8
21	Trypanosoma cruzi Subverts Host Cell Sialylation and May Compromise Antigen-specific CD8+ T Cell Responses. Journal of Biological Chemistry, 2010, 285, 13388-13396.	1.6	49
22	Proinflammatory Clearance of Apoptotic Neutrophils Induces an IL-12lowIL-10high Regulatory Phenotype in Macrophages. Journal of Immunology, 2010, 185, 2044-2050.	0.4	182
23	The importance of apoptosis for immune regulation in Chagas disease. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 259-262.	0.8	19
24	Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with <i>Leishmania major</i> . Cellular Microbiology, 2009, 11, 106-120.	1.1	47
25	Induction of autophagy correlates with increased parasite load of Leishmania amazonensis in BALB/c but not C57BL/6 macrophages. Microbes and Infection, 2009, 11, 181-190.	1.0	88
26	Apoptosis differentially regulates mesenteric and subcutaneous lymph node immune responses to <i>Trypanosoma cruzi</i> . European Journal of Immunology, 2008, 38, 139-146.	1.6	16
27	Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cellular Microbiology, 2008, 10, 1274-1285.	1.1	109
28	Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with <i>Leishmania amazonensis</i> . Journal of Leukocyte Biology, 2008, 84, 389-396.	1.5	76
29	Neutrophils Activate Macrophages for Intracellular Killing of <i>Leishmania major</i> through Recruitment of TLR4 by Neutrophil Elastase. Journal of Immunology, 2007, 179, 3988-3994.	0.4	128
30	The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells inTrypanosoma cruziinfection. Journal of Leukocyte Biology, 2007, 81, 942-951.	1.5	37
31	Cross-talk between apoptosis and cytokines in the regulation of parasitic infection. Cytokine and Growth Factor Reviews, 2007, 18, 97-105.	3.2	18
32	Caspase inhibition reduces lymphocyte apoptosis and improves host immune responses toTrypanosoma cruzi infection. European Journal of Immunology, 2007, 37, 738-746.	1.6	30
33	Neutrophils, apoptosis and phagocytic clearance: an innate sequence of cellular responses regulating intramacrophagic parasite infections. Parasitology, 2006, 132, S61-S68.	0.7	31
34	The importance of aberrant T-cell responses in Chagas disease. Trends in Parasitology, 2005, 21, 237-243.	1.5	52
35	CD40 signaling induces reciprocal outcomes in Leishmania-infected macrophages; roles of host genotype and cytokine milieu. Microbes and Infection, 2005, 7, 78-85.	1.0	16
36	Caspase-8 Activity Prevents Type 2 Cytokine Responses and Is Required for Protective T Cell-Mediated Immunity against <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2005, 174, 6314-6321.	0.4	38

GEORGE A DOSREIS

#	Article	IF	CITATIONS
37	Turnover of Neutrophils Mediated by Fas Ligand DrivesLeishmania majorInfection. Journal of Infectious Diseases, 2005, 192, 1127-1134.	1.9	29
38	Macrophage Interactions with Neutrophils Regulate <i>Leishmania major</i> Infection. Journal of Immunology, 2004, 172, 4454-4462.	0.4	200
39	Viral FLIP Impairs Survival of Activated T Cells and Generation of CD8+ T Cell Memory. Journal of Immunology, 2004, 172, 6313-6323.	0.4	45
40	Glucuronoxylomannan of Cryptococcus neoformans exacerbates in vitro yeast cell growth by interleukin 10-dependent inhibition of CD4+ T lymphocyte responses. Cellular Immunology, 2003, 222, 116-125.	1.4	24
41	Glycoinositolphospholipid from Trypanosoma cruzi: Structure, Biosynthesis and Immunobiology. Advances in Parasitology, 2003, 56, 1-41.	1.4	66
42	Role of Fas-Ligand Induced Apoptosis in Pulmonary Inflammation and Injury. Inflammation and Allergy: Drug Targets, 2003, 2, 161-167.	3.1	15
43	trans-Sialidase from Trypanosoma cruziBinds Host T-lymphocytes in a Lectin Manner. Journal of Biological Chemistry, 2002, 277, 45962-45968.	1.6	52
44	Costimulation of Host T Lymphocytes by a Trypanosomaltrans-Sialidase: Involvement of CD43 Signaling. Journal of Immunology, 2002, 168, 5192-5198.	0.4	64
45	Apoptosis Underlies Immunopathogenic Mechanisms in Acute Silicosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 78-84.	1.4	64
46	Glycoinositol phospholipids from Trypanosoma cruzi transmit signals to the cells of the host immune system through both ceramide and glycan chains. Microbes and Infection, 2002, 4, 1007-1013.	1.0	28
47	Apoptosis and parasitism: from the parasite to the host immune response. Advances in Parasitology, 2001, 49, 133-161.	1.4	57
48	The dual role of CTLA-4 in Leishmania infection. Trends in Parasitology, 2001, 17, 487-491.	1.5	17
49	FAS Ligand Triggers Pulmonary Silicosis. Journal of Experimental Medicine, 2001, 194, 155-164.	4.2	106
50	The macrophage haunted by cell ghosts: a pathogen grows. Trends in Immunology, 2000, 21, 489-494.	7.5	50
51	Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature, 2000, 403, 199-203.	13.7	426
52	Susceptible hosts: a resort for parasites right in the eye of the immune response. Anais Da Academia Brasileira De Ciencias, 2000, 72, 79-82.	0.3	6
53	TGF-β Mediates CTLA-4 Suppression of Cellular Immunity in Murine Kalaazar. Journal of Immunology, 2000, 164, 2001-2008.	0.4	106
54	Early in vitro priming of distinct Th cell subsets determines polarized growth of visceralizing Leishmania in macrophages. International Immunology, 2000, 12, 1227-1233.	1.8	13

GEORGE A DOSREIS

#	ARTICLE	IF	CITATIONS
55	Costimulatory action of glycoinositolphospholipids from <i>Trypanosoma cruzi:</i> increased interleukin 2 secretion and induction of nuclear translocation of the nuclear factor of activated T cells 1. FASEB Journal, 1999, 13, 1627-1636.	0.2	18
56	Increased susceptibility of Fas ligand-deficientgld mice toTrypanosoma cruzi infection due to a Th2-biased host immune response. European Journal of Immunology, 1999, 29, 81-89.	1.6	66
57	The role of tissue-infiltrating T cells in immunopathology of Chagas disease. Memorias Do Instituto Oswaldo Cruz, 1999, 94, 279-280.	0.8	1
58	Peripheral T-cell self-reactivity and immunological memory. Trends in Immunology, 1998, 19, 587-588.	7.5	3
59	Unresponsive CD4+T Lymphocytes fromLeishmania chagasi–Infected Mice Increase Cytokine Production and Mediate Parasite Killing after Blockade of B7â€1/CTLAâ€4 Molecular Pathway. Journal of Infectious Diseases, 1998, 178, 1847-1851.	1.9	37
60	Cell-mediated immunity in experimental Trypanosoma cruzi infection. Parasitology Today, 1997, 13, 335-342.	3.1	96
61	Ligation of CD4 Concomitant to Activation Induces Primary CD4+T-Cell Adhesion and Pseudopodia Formationin Vitro. Cellular Immunology, 1996, 172, 43-51.	1.4	2
62	Programmed T-cell death in experimental chagas disease. Parasitology Today, 1995, 11, 391-394.	3.1	40
63	Exogenous antigen control of autoreactive T-cell MHC specificity. Trends in Immunology, 1994, 15, 597-598.	7.5	0
64	T-lymphocytes in experimentalLeishmania amazonensis infection: comparison between immunized and naive BALB/c mice. Zeitschrift FÃ1⁄4r Parasitenkunde (Berlin, Germany), 1992, 78, 16-22.	0.8	8
65	Naturally activated and resting T cells differ in their activation requirements for growth and secretory activities. Cellular Immunology, 1990, 125, 120-129.	1.4	3
66	Comparative analysis of splenic cell proliferation induced by interleukin 3 and by syngeneic accessory cells (syngeneic mixed leukocyte reaction): Evidence that autoreactive T-cell functioning instructs hematopoietic phenomena. Cellular Immunology, 1990, 125, 210-224.	1.4	12
67	Purinergic modulation of T-lymphocyte activation: Differential susceptibility of distinct activation steps and correlation with intracellular 3′,5′-cyclic adenosine monophosphate accumulation. Cellular Immunology, 1986, 101, 213-231.	1.4	42
68	Analysis of autoreactive I region-restricted T cell colonies isolated from the guinea pig syngeneic mixed leukocyte reaction and from immune responses to conventional foreign antigens. European Journal of Immunology, 1985, 15, 466-472.	1.6	25