
Torstein Pedersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/666579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison Between Trophic Positions in the Barents Sea Estimated From Stable Isotope Data and a Mass Balance Model. Frontiers in Marine Science, 2022, 9, .	1.2	5
2	Horizontal and Vertical Migration of Anglerfish Lophius piscatorius in Relation to Hydrography in Faroese Waters. Frontiers in Marine Science, 2022, 9, .	1.2	0
3	Future trajectories of change for an Arctic deepâ€sea ecosystem connected to coastal kelp forests. Restoration Ecology, 2021, 29, e13327.	1.4	5
4	Community structure of deep fjord and shelf benthic fauna receiving different detrital kelp inputs in northern Norway. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 168, 103433.	0.6	5
5	Overexploitation, Recovery, and Warming of the Barents Sea Ecosystem During 1950–2013. Frontiers in Marine Science, 2021, 8, .	1.2	15
6	Effects of season, bottom substrate and population dynamics on fish communities in shallow subarctic northeast Atlantic waters. Journal of Sea Research, 2021, 178, 102136.	0.6	1
7	Kelp-carbon uptake by Arctic deep-sea food webs plays a noticeable role in maintaining ecosystem structural and functional traits. Journal of Marine Systems, 2020, 203, 103268.	0.9	19
8	Lifeâ€history genomic regions explain differences in Atlantic salmon marine diet specialization. Journal of Animal Ecology, 2020, 89, 2677-2691.	1.3	28
9	Predation mortality from ambush and cruising predators on newly-settled 0-group gadoids. Journal of Experimental Marine Biology and Ecology, 2020, 529, 151396.	0.7	3
10	Synergism between cruising cod and ambush sculpin predators on 0-group gadoids is modified by daylight cycle and presence of aggressive wolffish. Journal of Experimental Marine Biology and Ecology, 2020, 526, 151356.	0.7	3
11	Temporal and spatial dynamics of the invasive red king crab and native brachyuran and anomuran larvae in Norwegian waters. Aquatic Biology, 2020, 29, 1-16.	0.5	3
12	Best practices for ecological model evaluation I. The Nansen Legacy Report Series, 2020, , .	0.1	0
13	Best practices for ecological model evaluation II. The Nansen Legacy Report Series, 2020, , .	0.1	0
14	Can multitrophic interactions and ocean warming influence largeâ€scale kelp recovery?. Ecology and Evolution, 2019, 9, 2847-2862.	0.8	39
15	Are life histories of Norwegian fjord herring populations of Pacific ancestry similar to those of Atlantic or Pacific herring?. Journal of Marine Systems, 2018, 180, 237-245.	0.9	5
16	Effects of the invasive red king crab on food web structure and ecosystem properties in an Atlantic fjord. Marine Ecology - Progress Series, 2018, 596, 13-31.	0.9	22
17	Seasonal dynamics of meroplankton in a high-latitude fjord. Journal of Marine Systems, 2017, 168, 17-30.	0.9	28
18	Invasive red king crabs feed on both spawned-out capelin and their eggs. Marine Ecology - Progress Series, 2017, 563, 139-155.	0.9	3

TORSTEIN PEDERSEN

#	Article	IF	CITATIONS
19	Trophic niche of the invasive red king crab Paralithodes camtschaticus in a benthic food web. Marine Ecology - Progress Series, 2017, 565, 113-129.	0.9	22
20	Spatial patterns of spring meroplankton along environmental gradients in a sub-Arctic fjord. Aquatic Biology, 2017, 26, 185-197.	0.5	5
21	Species diversity affects ecosystem structure and mass flows in fjords. Regional Studies in Marine Science, 2016, 3, 205-215.	0.4	12
22	Predation on early life stages is decisive for year-class strength in the Barents Sea capelin (<i>Mallotus villosus</i>) stock. ICES Journal of Marine Science, 2016, 73, 182-195.	1.2	34
23	Food resource partitioning between three sympatric fish species in Porsangerfjord, Norway. Polar Biology, 2015, 38, 583-589.	0.5	7
24	Macrobenthic biomass and production in a heterogenic subarctic fjord after invasion by the red king crab. Journal of Sea Research, 2015, 106, 1-13.	0.6	23
25	Extreme male-skewed sex ratios on spawning grounds for Atlantic cod Gadus morhua with typical coastal cod signatures of the Pan I (pantophysin) locus. Aquatic Biology, 2015, 1, 133-142.	0.5	5
26	Age and growth of anglerfish (Lophius piscatorius) in Faroese waters. Fisheries Research, 2013, 139, 51-60.	0.9	9
27	Invasive red king crab affects lumpsucker recruitment by egg consumption. Marine Ecology - Progress Series, 2012, 469, 87-99.	0.9	16
28	Ontogenetic niche changes in haddock Melanogrammus aeglefinus reflected by stable isotope signatures, δ13C and δ15N. Marine Ecology - Progress Series, 2012, 451, 175-185.	0.9	6
29	Settling-depth vs. genotype and size vs. genotype correlations at the Pan I locus in 0-group Atlantic cod Gadus morhuaÂ. Marine Ecology - Progress Series, 2012, 468, 267-278.	0.9	29
30	Optimal foraging in chick-raising Common Guillemots (Uria aalge). Journal of Ornithology, 2011, 152, 253-259.	0.5	22
31	Integrating spatial and temporal mortality from herring on capelin larvae: a study in the Barents Sea. ICES Journal of Marine Science, 2009, 66, 2183-2194.	1.2	8
32	Comparing pristine and depleted ecosystems: The SÃ,rfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems. Progress in Oceanography, 2009, 81, 174-187.	1.5	13
33	Introduction to the Proceedings of the ECONORTH Symposium on Ecosystem Dynamics in the Norwegian and Barents Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1893-1894.	0.6	0
34	Advection and retention as life trait modulators of capelin larvae—A case study from the Norwegian coast and the Barents Sea. Fisheries Research, 2009, 97, 234-242.	0.9	8
35	Effects of predation from juvenile herring (<i>Clupea harengus</i>) on mortality rates of capelin (<i>Mallotus villosus</i>) larvae. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1693-1706.	0.7	35

36 Diet of 0-group stages of capelin (Mallotus villosus), herring (Clupea harengus) and cod (Gadus) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 62

TORSTEIN PEDERSEN

#	Article	IF	CITATIONS
37	Trophic model of a lightly exploited cod-dominated ecosystem. Ecological Modelling, 2008, 214, 95-111.	1.2	25
38	Effects of growth rates on the otolith increments deposition rate in capelin larvae (Mallotus) Tj ETQq0 0 0 rgB	Г /Overlock	10 Tf 50 702

39	Spatial Scales of Movement in Northeast Atlantic Coastal Cod. Reviews in Fisheries Science, 2008, 16, 348-356.	2.1	7
40	Diet, growth and early survival of Atlantic Puffin (Fratercula arctica) chicks in North Norway. Waterbirds, 2008, 31, 107-114.	0.2	12
41	Trophic studies in a high-latitude fjord ecosystem— a comparison of stable isotope analyses (δ13C and) Tj ET Sciences, 2008, 65, 2791-2806.	Qq1 1 0.7 0.7	′84314 rgBT 62
42	Effects of predation from pelagic 0-group cod (Gadus morhua) on mortality rates of capelin (Mallotus villosus) larvae in the Barents Sea. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1710-1722.	0.7	19
43	Estimation of digestion rates for herring Clupea harengus L. feeding on fish larvae. Journal of Fish Biology, 2007, 70, 638-643.	0.7	18
44	Effects of alternative prey on predation intensity from herring Clupea harengus and sandeel Ammodytes marinus on capelin Mallotus villosus larvae in the Barents Sea. Journal of Fish Biology, 2006, 69, 1807-1823.	0.7	27
45	Prey partitioning between cod (Cadus morhua) and minke whale (Balaenoptera acutorostrata) in the Barents Sea. Marine Biology Research, 2006, 2, 89-99.	0.3	7
46	Macrobenthic biomass, productivity (P/B) and production in a high-latitude ecosystem, North Norway. Marine Ecology - Progress Series, 2006, 321, 67-77.	0.9	33
47	Goosander predation and its potential impact on Atlantic salmon smolts in the River Tana estuary, northern Norway. Journal of Fish Biology, 2005, 66, 924-937.	0.7	15
48	The impact of marine fish predation on Atlantic salmon smolts (Salmo salar) in the Tana estuary, North Norway, in the presence of an alternative prey, lesser sandeel (Ammodytes marinus). Fisheries Research, 2005, 76, 466-474.	0.9	22
49	How can the stock recruitment relationship of the Barents Sea capelin (Mallotus villosus) be improved by incorporating biotic and abiotic factors?. Polar Research, 2004, 23, 19-26.	1.6	19
50	How can the stock recruitment relationship of the Barents Sea capelin (Mallotus villosus) be improved by incorporating biotic and abiotic factors?. Polar Research, 2004, 23, 19-26.	1.6	3
51	Sampling and a mortality model of a Norwegian fjord cod (Gadus morhua L.) population. Fisheries Research, 2003, 63, 1-20.	0.9	7
52	How may feeding data be integrated into a model for a Norwegian fjord population of cod (<i>Gadus) Tj ETQq0</i>	0 0 rgBT /	Overlock 10

53	Migration, growth and mortality of released reared and wild cod (Gadus morhua L.) in Malangen, northern Norway. Sarsia, 2002, 87, 97-109.	0.5	11
54	Sexual and geographical variation in life history parameters of the shorthorn sculpin. Journal of Fish Biology, 2002, 61, 1453-1464.	0.7	14

TORSTEIN PEDERSEN

#	Article	IF	CITATIONS
55	Variability in recruitment, growth and sexual maturity of coastal cod (Gadus morhua L.) in a fjord system in northern Norway. Fisheries Research, 2001, 52, 179-189.	0.9	28
56	Foraging strategies of Great Cormorants <i>Phalacrocorax carbo carbo</i> wintering north of the Arctic Circle. Bird Study, 2001, 48, 59-67.	0.4	19
57	The enhancement of cod stocks. Fish and Fisheries, 2000, 1, 173-205.	2.7	146
58	A 27-year study of brown trout population dynamics and exploitation in Lake SongsjÃ,en, central Norway. Journal of Fish Biology, 2000, 57, 1227-1244.	0.7	5
59	Catching cod for tagging experiments. Fisheries Research, 1999, 42, 57-66.	0.9	23
60	Effect of parent type and temperature on vertebrae number in juvenile cod,Gadus morhua(L.), in Northern Norway. Sarsia, 1996, 80, 294-298.	0.5	19
61	Morphological changes during metamorphosis in cod (Gadus morhua L.), with particular reference to the stomach and pyloric caeca. Journal of Fish Biology, 1992, 41, 449-461.	0.7	77
62	The influence of dietary lipid classes on the fatty acid composition of small cod Gadus morhua L. juveniles reared in an enclosure in northern Norway. Journal of Experimental Marine Biology and Ecology, 1991, 148, 59-76.	0.7	56
63	Marking cod (Gadus morhua L.) juveniles with oxytetracycline incorporated into the feed. Fisheries Research, 1991, 12, 57-64.	0.9	13
64	Growth rates of large, sexually mature cod Gadus morhua, in relation to condition and temperature during an annual cycle. Aquaculture, 1989, 81, 161-168.	1.7	117