
Jennifer Anne Byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6665337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vignettes to Illustrate the Value of Tumor Biobanks in Cancer Research in Canada. Biopreservation and Biobanking, 2022, 20, 75-83.	1.0	3
2	How Many Health Research Biobanks Are There?. Biopreservation and Biobanking, 2022, 20, 224-228.	1.0	6
3	Rare germline variants in childhood cancer patients suspected of genetic predisposition to cancer. Genes Chromosomes and Cancer, 2022, 61, 81-93.	2.8	2
4	"No Country Bureaucratised its way to Excellence― A Content Analysis of Comments on a Petition to Streamline Australian Research Ethics and Governance Processes. Journal of Empirical Research on Human Research Ethics, 2022, 17, 102-113.	1.3	6
5	What Do Biomedical Researchers Want from Biobanks? Results of an Online Survey. Biopreservation and Biobanking, 2022, 20, 271-282.	1.0	5
6	ldentification of human gene research articles with wrongly identified nucleotide sequences. Life Science Alliance, 2022, 5, e202101203.	2.8	12
7	<i>In vitro</i> and <i>in vivo</i> drug screens of tumor cells identify novel therapies for highâ€risk child cancer. EMBO Molecular Medicine, 2022, 14, e14608.	6.9	12
8	The Availability of Human Biospecimens to Support Biomarker Research. Biomarker Insights, 2022, 17, 117727192210917.	2.5	4
9	Priorities in Biobanking Research: A Report on the 2021 ISBER Round Table. Biopreservation and Biobanking, 2022, , .	1.0	0
10	Is the future of peer review automated?. BMC Research Notes, 2022, 15, .	1.4	22
11	The Australia and New Zealand Cardioâ€Oncology Registry: evaluation of chemotherapyâ€related cardiotoxicity in a national cohort of paediatric cancer patients. Internal Medicine Journal, 2021, 51, 229-234.	0.8	6
12	Building Research Support Capacity across Human Health Biobanks during the COVID-19 Pandemic. Biomarker Insights, 2021, 16, 117727192110241.	2.5	5
13	The thin ret(raction) line: biomedical journal responses to incorrect non-targeting nucleotide sequence reagents in human gene knockdown publications. Scientometrics, 2021, 126, 3513-3534.	3.0	11
14	A Pathway to Precision Medicine for Aboriginal Australians: A Study Protocol. Methods and Protocols, 2021, 4, 42.	2.0	8
15	Automated screening of COVID-19 preprints: can we help authors to improve transparency and reproducibility?. Nature Medicine, 2021, 27, 6-7.	30.7	33
16	Misinformation: an empirical study with scientists and communicators during the COVID-19 pandemic. BMJ Open Science, 2021, 5, e100188.	1.7	9
17	Analysis of the CD8+ IL-10+ T cell response elicited by vaccination with the oncogenic tumor-self protein D52. Human Vaccines and Immunotherapeutics, 2020, 16, 1413-1423.	3.3	2
18	Improving Academic Biobank Value and Sustainability Through an Outputs Focus. Value in Health, 2020, 23, 1072-1078.	0.3	21

#	Article	IF	CITATIONS
19	Digital magic, or the dark arts of the 21 st century—how can journals and peer reviewers detect manuscripts and publications from paper mills?. FEBS Letters, 2020, 594, 583-589.	2.8	71
20	<i>Biomarker Insights</i> Editor-in-Chief Announcement. Biomarker Insights, 2020, 15, 117727192090667.	2.5	0
21	Flagging incorrect nucleotide sequence reagents in biomedical papers: To what extent does the leading publication format impede automatic error detection?. Scientometrics, 2020, 124, 1139-1156.	3.0	4
22	Delayed recruiting of TPD52 to lipid droplets – evidence for a "second wave―of lipid droplet-associated proteins that respond to altered lipid storage induced by Brefeldin A treatment. Scientific Reports, 2019, 9, 9790.	3.3	5
23	We need to talk about systematic fraud. Nature, 2019, 566, 9-9.	27.8	24
24	Research Perspective on Utilizing and Valuing Tumor Biobanks. Biopreservation and Biobanking, 2019, 17, 219-229.	1.0	22
25	"l remember how I felt, but I don't remember the geneâ€+ Families' experiences of cancerâ€+elated genetic testing in childhood. Pediatric Blood and Cancer, 2019, 66, e27762.	1.5	26
26	Semi-automated fact-checking of nucleotide sequence reagents in biomedical research publications: The Seek & Blastn tool. PLoS ONE, 2019, 14, e0213266.	2.5	46
27	The Australian and New Zealand Children's Haematology/Oncology Group Biobanking Network. Biopreservation and Biobanking, 2019, 17, 95-97.	1.0	2
28	The Possibility of Systematic Research Fraud Targeting Under-Studied Human Genes: Causes, Consequences, and Potential Solutions. Biomarker Insights, 2019, 14, 117727191982916.	2.5	25
29	Predictors of Success of Phase II Pediatric Oncology Clinical Trials. Oncologist, 2019, 24, e765-e774.	3.7	6
30	An Australian Biobank Certification Scheme: A Study of Economic Costs to Participating Biobanks. Biopreservation and Biobanking, 2018, 16, 53-58.	1.0	11
31	Research governance review of a negligible-risk research project: Too much of a good thing?. Research Ethics, 2018, 14, 1-12.	1.7	9
32	ls Your Biobank Up to Standards? A Review of the National Canadian Tissue Repository Network Required Operational Practice Standards and the Controlled Documents of a Certified Biobank. Biopreservation and Biobanking, 2018, 16, 36-41.	1.0	9
33	Investigation of clinically relevant germline variants detected by next-generation sequencing in patients with childhood cancer: a review of the literature. Journal of Medical Genetics, 2018, 55, 785-793.	3.2	17
34	Tumor Protein D52 (TPD52). , 2018, , 5779-5786.		0
35	Acute acinar pancreatitis blocks vesicle-associated membrane protein 8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation. Journal of Biological Chemistry, 2017, 292, 7828-7839.	3.4	16
36	Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines. Scientometrics, 2017, 110, 1471-1493.	3.0	31

JENNIFER ANNE BYRNE

#	Article	IF	CITATIONS
37	An HPLC-UV method for determining plasma dimethylacetamide concentrations in patients receiving intravenous busulfan. Biomedical Chromatography, 2017, 31, e3906.	1.7	2
38	Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan inAvivo. European Journal of Cancer, 2017, 83, 132-141.	2.8	24
39	Programmed Death-Ligand 1 Expression in a Large Cohort of Pediatric Patients With Solid Tumor and Association With Clinicopathologic Features in Neuroblastoma. JCO Precision Oncology, 2017, 1, 1-12.	3.0	8
40	Development and Validation of a High Pressure Liquid Chromatography–UV Method for the Determination of Treosulfan and Its Epoxy Metabolites in Human Plasma and Its Application in Pharmacokinetic Studies. Journal of Chromatographic Science, 2016, 54, bmv145.	1.4	10
41	Quality and reporting practices in an Australian cancer biobank cohort. Clinical Biochemistry, 2016, 49, 492-497.	1.9	8
42	Improving the peer review of narrative literature reviews. Research Integrity and Peer Review, 2016, 1, 12.	5.2	79
43	Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte, 2016, 5, 326-332.	2.8	5
44	The BET bromodomain inhibitor exerts the most potent synergistic anticancer effects with quinone-containing compounds and anti-microtubule drugs. Oncotarget, 2016, 7, 79217-79232.	1.8	17
45	Tumor Protein D52 (TPD52). , 2016, , 1-8.		0
46	A critical analysis of cancer biobank practices in relation to biospecimen quality. Biophysical Reviews, 2015, 7, 369-378.	3.2	10
47	Neuroblastoma, Body Mass Index, and Survival. Medicine (United States), 2015, 94, e713.	1.0	18
48	TPD52 expression increases neutral lipid storage within cultured cells. Journal of Cell Science, 2015, 128, 3223-38.	2.0	31
49	Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Science Translational Medicine, 2015, 7, 312ra176.	12.4	120
50	Biobank Classification in an Australian Setting. Biopreservation and Biobanking, 2015, 13, 212-218.	1.0	14
51	Genetic causes of cancer predisposition in children and adolescents. Translational Pediatrics, 2015, 4, 67-75.	1.2	28
52	Abstract PR09: MYCN and is a therapeutic target in neuroblastoma. , 2015, , .		0
53	Overexpressed oncogenic tumor-self antigens. Human Vaccines and Immunotherapeutics, 2014, 10, 3297-3305.	3.3	48
54	TPD52 represents a survival factor in <i>ERBB2</i> â€amplified breast cancer cells. Molecular Carcinogenesis, 2014, 53, 807-819.	2.7	31

JENNIFER ANNE BYRNE

#	Article	IF	CITATIONS
55	Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO Journal, 2014, 33, 157-170.	7.8	121
56	Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene?. Tumor Biology, 2014, 35, 7369-7382.	1.8	51
57	Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA Clinical, 2014, 1, 59-77.	4.1	34
58	Identification of PLP2 and RAB5C as novel TPD52 binding partners through yeast two-hybrid screening. Molecular Biology Reports, 2014, 41, 4565-4572.	2.3	11
59	Lipidomics in Breast Cancer. , 2014, , 225-244.		Ο
60	Injection site and regulatory T cells influence durable vaccine-induced tumor immunity to an over-expressed self tumor associated antigen. Oncolmmunology, 2013, 2, e25049.	4.6	7
61	Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. American Journal of Physiology - Renal Physiology, 2013, 305, G439-G452.	3.4	29
62	Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle, 2013, 12, 3083-3097.	2.6	26
63	Challenges in Identifying Candidate Amplification Targets in Human Cancers: Chromosome 8q21 as a Case Study. Genes and Cancer, 2012, 3, 87-101.	1.9	9
64	TPD52 (Tumor Protein D52). , 2012, , 1906-1911.		0
65	Clinical Significance of Tumor Protein D52 Immunostaining in a Large Series of Ewing's Sarcoma Family of Tumors. Pediatric and Developmental Pathology, 2011, 14, 255-256.	1.0	4
66	Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion. International Journal of Oncology, 2010, 36, 1155-63.	3.3	13
67	Formin INF2 regulates MAL-mediated transport of Lck to the plasma membrane of human T lymphocytes. Blood, 2010, 116, 5919-5929.	1.4	52
68	MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome. BMC Cancer, 2010, 10, 497.	2.6	49
69	Tumor protein D52 expression and Ca ²⁺ -dependent phosphorylation modulates lysosomal membrane protein trafficking to the plasma membrane. American Journal of Physiology - Cell Physiology, 2010, 298, C725-C739.	4.6	28
70	The Formin INF2 Regulates Basolateral-to-Apical Transcytosis and Lumen Formation in Association with Cdc42 and MAL2. Developmental Cell, 2010, 18, 814-827.	7.0	81
71	Memory and cellular immunity induced by a DNA vaccine encoding self antigen TPD52 administered with soluble GM-CSF. Cancer Immunology, Immunotherapy, 2009, 58, 1337-1349.	4.2	18
72	Mucin 1 (MUC1) is a novel partner for MAL2 in breast carcinoma cells. BMC Cell Biology, 2009, 10, 7.	3.0	21

JENNIFER ANNE BYRNE

#	Article	IF	CITATIONS
73	TPD52, a candidate gene from genomic studies, is overexpressed in testicular germ cell tumours. Molecular and Cellular Endocrinology, 2009, 306, 75-80.	3.2	9
74	Isolation of Nucleic Acids from Hard Tissues. , 2009, , .		0
75	Vaccination with metastasis-related tumor associated antigen TPD52 and CpG/ODN induces protective tumor immunity. Cancer Immunology, Immunotherapy, 2008, 57, 799-811.	4.2	17
76	Nonredundant Functions for Tumor Protein D52-Like Proteins Support Specific Targeting of TPD52. Clinical Cancer Research, 2008, 14, 5050-5060.	7.0	50
77	Tumor Protein D52 Overexpression and Gene Amplification in Cancers from a Mosaic of Microarrays. Critical Reviews in Oncogenesis, 2008, 14, 33-55.	0.4	24
78	Induction of Tumorigenesis and Metastasis by the Murine Orthologue of Tumor Protein D52. Molecular Cancer Research, 2007, 5, 133-144.	3.4	56
79	Expression of tumor protein D52-like genes in childhood leukemia at diagnosis: Clinical and sample considerations. Leukemia Research, 2006, 30, 1355-1363.	0.8	25
80	Tumor protein D52 (TPD52): a novel B-cell/plasma-cell molecule with unique expression pattern and Ca2+-dependent association with annexin VI. Blood, 2005, 105, 2812-2820.	1.4	41
81	Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer. International Journal of Cancer, 2005, 117, 1049-1054.	5.1	78
82	D53 (TPD52L1) is a cell cycle-regulated protein maximally expressed at the G2-M transition in breast cancer cells. Experimental Cell Research, 2005, 310, 152-165.	2.6	38
83	Overexpression, Amplification, and Androgen Regulation of TPD52 in Prostate Cancer. Cancer Research, 2004, 64, 3814-3822.	0.9	145
84	The tumor protein D52 family: many pieces, many puzzles. Biochemical and Biophysical Research Communications, 2004, 325, 1115-1121.	2.1	85
85	Alternative Splicing as a Mechanism for Regulating 14-3-3 Binding: Interactions between hD53 (TPD52L1) and 14-3-3 Proteins. Journal of Molecular Biology, 2003, 332, 675-687.	4.2	35
86	The LIM Domain Protein LMO4 Interacts with the Cofactor CtIP and the Tumor Suppressor BRCA1 and Inhibits BRCA1 Activity. Journal of Biological Chemistry, 2002, 277, 7849-7856.	3.4	135
87	MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. Journal of Cell Biology, 2002, 159, 37-44.	5.2	124
88	The Role of the Coiled-Coil Motif in Interactions Mediated by TPD52. Biochemical and Biophysical Research Communications, 2001, 288, 56-61.	2.1	31
89	Identification of MAL2, a Novel Member of the MAL Proteolipid Family, Though Interactions with TPD52-like Proteins in the Yeast Two-Hybrid System. Genomics, 2001, 76, 81-88.	2.9	85
90	The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma. Genes Chromosomes and Cancer, 2000, 29, 48-57.	2.8	82

#	Article	IF	CITATIONS
91	Identification of homo- and heteromeric interactions between members of the breast carcinoma-associated D52 protein family using the yeast two-hybrid system. Oncogene, 1998, 16, 873-881.	5.9	78
92	Cloning of a third member of the D52 gene family indicates alternative coding sequence usage in D52-like transcripts. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 155-168.	2.4	46
93	Definition of the Tumor Protein D52 (TPD52) Gene Family through Cloning ofD52Homologues in Human (hD53) and Mouse (mD52). Genomics, 1996, 35, 523-532.	2.9	90
94	Stromelysin-3 in the biology of the normal and neoplastic mammary gland. Journal of Mammary Gland Biology and Neoplasia, 1996, 1, 231-240.	2.7	22
95	The Tissue Inhibitor of Metalloproteinases-3 Gene in Breast Carcinoma: Identification of Multiple Polyadenylation Sites and a Stromal Pattern of Expression. Molecular Medicine, 1995, 1, 418-427.	4.4	36
96	Three non-overlapping regions of chromosome arm 11p allele loss identified in infantile tumors of adrenal and liver. Genes Chromosomes and Cancer, 1993, 8, 104-111.	2.8	47
97	The 11p15.5 ribonucleotide reductase M1 subunit locus is not imprinted in Wilms' tumour and hepatoblastoma. Human Genetics, 1993, 91, 275-7.	3.8	9
98	The M1 subunit of ribonucleotide reductase refines mapping of genetic rearrangements at chromosome 11p15. Cancer Genetics and Cytogenetics, 1992, 59, 206-209.	1.0	7
99	Short-term expansion of receptive fields in rat primary somatosensory cortex after hindpaw digit denervation. Brain Research, 1991, 565, 218-224.	2.2	64
100	Human polymorphic probe pE1.8 detects SacI polymorphism in the ribonucleotide reductase M1 subunit gene. Human Genetics, 1991, 87, 376.	3.8	1
101	Tumor protein D52. The AFCS-nature Molecule Pages, 0, , .	0.2	1
102	Tumor protein D52l2. The AFCS-nature Molecule Pages, 0, , .	0.2	0
103	Tumor protein D52l1. The AFCS-nature Molecule Pages, 0, , .	0.2	0