Yao-Yi Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6665312/publications.pdf

Version: 2024-02-01

623734 610901 1,009 67 14 24 citations g-index h-index papers 70 70 70 659 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards the automated large-scale reconstruction of past road networks from historical maps. Computers, Environment and Urban Systems, 2022, 94, 101794.	7.1	17
2	W-TSS: A Wavelet-Based Algorithm for Discovering Time Series Shapelets. Sensors, 2021, 21, 5801.	3.8	0
3	BiS4EV: A fast routing algorithm considering charging stations and preferences for electric vehicles. Engineering Applications of Artificial Intelligence, 2021, 104, 104378.	8.1	7
4	Combining Remote-Sensing-Derived Data and Historical Maps for Long-Term Back-Casting of Urban Extents. Remote Sensing, 2021, 13, 3672.	4.0	8
5	Using dynamic time warping self-organizing maps to characterize diurnal patterns in environmental exposures. Scientific Reports, 2021, 11, 24052.	3.3	7
6	Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning. International Journal of Geographical Information Science, 2020, 34, 824-849.	4.8	20
7	A Review of Air Quality Modeling. Mapan - Journal of Metrology Society of India, 2020, 35, 287-300.	1.5	18
8	Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks. IEEE Access, 2020, 8, 6978-6996.	4.2	30
9	Building Linked Spatio-Temporal Data from Vectorized Historical Maps. Lecture Notes in Computer Science, 2020, , 409-426.	1.3	9
10	Historical Map Applications and Processing Technologies. Springer Briefs in Geography, 2020, , 9-36.	0.2	4
11	Creating Structured, Linked Geographic Data from Historical Maps: Challenges and Trends. Springer Briefs in Geography, 2020, , 37-63.	0.2	3
12	Training Deep Learning Models for Geographic Feature Recognition from Historical Maps. Springer Briefs in Geography, 2020, , 65-98.	0.2	6
13	An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images. , 2020, , .		7
14	Building Autocorrelation-Aware Representations for Fine-Scale Spatiotemporal Prediction. , 2020, , .		9
15	A VLOS Compliance Solution to Ground/Aerial Parcel Delivery Problem., 2019,,.		2
16	Extracting geographic features from the Internet: A geographic information mining framework. Knowledge-Based Systems, 2019, 174, 57-72.	7.1	3
17	An intelligent interface for integrating climate, hydrology, agriculture, and socioeconomic models. , 2019, , .		2
18	A New Gabor Filter-Based Method for Automatic Recognition of Hatched Residential Areas. IEEE Access, 2019, 7, 40649-40662.	4.2	8

#	Article	IF	Citations
19	DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis. , 2019, , .		15
20	Building Explainable Predictive Analytics for Location-Dependent Time-Series Data. , 2019, , .		1
21	Kartta Labs., 2019,,.		10
22	Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data. JMIR MHealth and UHealth, 2019, 7, e11201.	3.7	28
23	Automatic intersection extraction and building arrangement with StarCraft II maps. SIGSPATIAL Special, 2019, 10, 4-5.	2.7	O
24	ADMSv2., 2019,,.		5
25	SRC. SIGSPATIAL Special, 2018, 9, 6-7.	2.7	3
26	A Matching Algorithm Based on Voronoi Diagram for Multi-Scale Polygonal Residential Areas. IEEE Access, 2018, 6, 4904-4915.	4.2	8
27	An Uncertainty Aware Method for Geographic Data Conflation. , 2018, , .		3
28	SRC. SIGSPATIAL Special, 2018, 9, 14-15.	2.7	5
29	Automatic intersection extraction and building arrangement with StarCraft II maps. , 2018, , .		O
30	Los angeles metro bus data analysis using GPS trajectory and schedule data (demo paper). , 2018, , .		6
31	Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning., 2018,,.		72
32	Spatialising uncertainty in image segmentation using weakly supervised convolutional neural networks: a case study from historical map processing. IET Image Processing, 2018, 12, 2084-2091.	2.5	20
33	Map Archive Mining: Visual-Analytical Approaches to Explore Large Historical Map Collections. ISPRS International Journal of Geo-Information, 2018, 7, 148.	2.9	36
34	Emerging trends in geospatial artificial intelligence (geoAl): potential applications for environmental epidemiology. Environmental Health, 2018, 17, 40.	4.0	113
35	Methods for Predicting Asthma Exacerbations using Personal Sensor Monitoring Systems. ISEE Conference Abstracts, 2018, 2017, 436.	0.0	0
36	A Scalable Data Integration and Analysis Architecture for Sensor Data of Pediatric Asthma. , 2017, 2017, 1407-1408.		9

#	Article	IF	CITATIONS
37	Mining Public Datasets for Modeling Intra-City PM2.5 Concentrations at a Fine Spatial Resolution. , 2017, 2017, .		20
38	Extracting Human Settlement Footprint from Historical Topographic Map Series Using Context-Based Machine Learning. , 2017, , .		20
39	Unlocking Textual Content from Historical Maps - Potentials and Applications, Trends, and Outlooks. Communications in Computer and Information Science, 2017, , 111-124.	0.5	6
40	Automatic alignment of geographic features in contemporary vector data and historical maps. , 2017, , .		17
41	Integrating Text Recognition for Overlapping Text Detection in Maps. IS&T International Symposium on Electronic Imaging, 2016, 28, 1-8.	0.4	3
42	Recognizing text in historical maps using maps from multiple time periods. , 2016, , .		3
43	Assessing the impact of graphical quality on automatic text recognition in digital maps. Computers and Geosciences, 2016, 93, 21-35.	4.2	26
44	Building knowledge graph from public data for predictive analysis. , 2016, , .		6
45	Q2P. ACM Transactions on the Web, 2016, 10, 1-29.	2.5	2
46	Querying historical maps as a unified, structured, and linked spatiotemporal source., 2015, , .		9
47	Recognizing text in raster maps. GeoInformatica, 2015, 19, 1-27.	2.7	33
48	Integration and Automation of Data Preparation and Data Mining. , 2014, , .		2
49	From map images to geographic names. , 2014, , .		5
50	A Survey of Digital Map Processing Techniques. ACM Computing Surveys, 2014, 47, 1-44.	23.0	93
51	A general approach for extracting road vector data from raster maps. International Journal on Document Analysis and Recognition, 2013, 16, 55-81.	3.4	37
52	Efficient and Robust Graphics Recognition from Historical Maps. Lecture Notes in Computer Science, 2013, , 25-35.	1.3	17
53	Generating Named Road Vector Data from Raster Maps. Lecture Notes in Computer Science, 2012, , 57-71.	1.3	2
54	Recognition of Multi-oriented, Multi-sized, and Curved Text., 2011,,.		22

#	Article	lF	Citations
55	A general approach to discovering, registering, and extracting features from raster maps. , 2010, , .		2
56	Strabo., 2010,,.		1
57	An Approach for Recognizing Text Labels in Raster Maps. , 2010, , .		14
58	Extracting Road Vector Data from Raster Maps. Lecture Notes in Computer Science, 2010, , 93-105.	1.3	5
59	A Method for Automatically Extracting Road Layers from Raster Maps. , 2009, , .		10
60	Automatic and Accurate Extraction of Road Intersections from Raster Maps. GeoInformatica, 2009, 13, 121-157.	2.7	48
61	Classification of raster maps for automatic feature extraction. , 2009, , .		4
62	Automatic extraction of road intersection position, connectivity, and orientations from raster maps. , 2008, , .		24
63	Classification of Line and Character Pixels on Raster Maps Using Discrete Cosine Transformation Coefficients and Support Vector Machine. , 2006, , .		3
64	Automatically identifying and georeferencing street maps on the web. , 2005, , .		5
65	Automatic extraction of road intersections from raster maps. , 2005, , .		26
66	Automatically and accurately conflating orthoimagery and street maps. , 2004, , .		48
67	Kartta Labs: Collaborative Time Travel. , 0, , .		1