
Yao-Yi Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6665312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging trends in geospatial artificial intelligence (geoAl): potential applications for environmental epidemiology. Environmental Health, 2018, 17, 40.	4.0	113
2	A Survey of Digital Map Processing Techniques. ACM Computing Surveys, 2014, 47, 1-44.	23.0	93
3	Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. , 2018, , .		72
4	Automatically and accurately conflating orthoimagery and street maps. , 2004, , .		48
5	Automatic and Accurate Extraction of Road Intersections from Raster Maps. GeoInformatica, 2009, 13, 121-157.	2.7	48
6	A general approach for extracting road vector data from raster maps. International Journal on Document Analysis and Recognition, 2013, 16, 55-81.	3.4	37
7	Map Archive Mining: Visual-Analytical Approaches to Explore Large Historical Map Collections. ISPRS International Journal of Geo-Information, 2018, 7, 148.	2.9	36
8	Recognizing text in raster maps. GeoInformatica, 2015, 19, 1-27.	2.7	33
9	Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks. IEEE Access, 2020, 8, 6978-6996.	4.2	30
10	Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data. JMIR MHealth and UHealth, 2019, 7, e11201.	3.7	28
11	Automatic extraction of road intersections from raster maps. , 2005, , .		26
12	Assessing the impact of graphical quality on automatic text recognition in digital maps. Computers and Geosciences, 2016, 93, 21-35.	4.2	26
13	Automatic extraction of road intersection position, connectivity, and orientations from raster maps. , 2008, , .		24
14	Recognition of Multi-oriented, Multi-sized, and Curved Text. , 2011, , .		22
15	Mining Public Datasets for Modeling Intra-City PM2.5 Concentrations at a Fine Spatial Resolution. , 2017, 2017, .		20
16	Extracting Human Settlement Footprint from Historical Topographic Map Series Using Context-Based Machine Learning. , 2017, , .		20
17	Spatialising uncertainty in image segmentation using weakly supervised convolutional neural networks: a case study from historical map processing. IET Image Processing, 2018, 12, 2084-2091.	2.5	20
18	Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning. International Journal of Geographical Information Science, 2020, 34, 824-849.	4.8	20

ΥΑΟ-ΥΙ CHIANG

#	Article	IF	CITATIONS
19	A Review of Air Quality Modeling. Mapan - Journal of Metrology Society of India, 2020, 35, 287-300.	1.5	18
20	Efficient and Robust Graphics Recognition from Historical Maps. Lecture Notes in Computer Science, 2013, , 25-35.	1.3	17
21	Automatic alignment of geographic features in contemporary vector data and historical maps. , 2017, ,		17
22	Towards the automated large-scale reconstruction of past road networks from historical maps. Computers, Environment and Urban Systems, 2022, 94, 101794.	7.1	17
23	DETECT: Deep Trajectory Clustering for Mobility-Behavior Analysis. , 2019, , .		15
24	An Approach for Recognizing Text Labels in Raster Maps. , 2010, , .		14
25	A Method for Automatically Extracting Road Layers from Raster Maps. , 2009, , .		10
26	Kartta Labs. , 2019, , .		10
27	Querying historical maps as a unified, structured, and linked spatiotemporal source. , 2015, , .		9
28	A Scalable Data Integration and Analysis Architecture for Sensor Data of Pediatric Asthma. , 2017, 2017, 1407-1408.		9
29	Building Linked Spatio-Temporal Data from Vectorized Historical Maps. Lecture Notes in Computer Science, 2020, , 409-426.	1.3	9
30	Building Autocorrelation-Aware Representations for Fine-Scale Spatiotemporal Prediction. , 2020, , .		9
31	A Matching Algorithm Based on Voronoi Diagram for Multi-Scale Polygonal Residential Areas. IEEE Access, 2018, 6, 4904-4915.	4.2	8
32	A New Gabor Filter-Based Method for Automatic Recognition of Hatched Residential Areas. IEEE Access, 2019, 7, 40649-40662.	4.2	8
33	Combining Remote-Sensing-Derived Data and Historical Maps for Long-Term Back-Casting of Urban Extents. Remote Sensing, 2021, 13, 3672.	4.0	8
34	BiS4EV: A fast routing algorithm considering charging stations and preferences for electric vehicles. Engineering Applications of Artificial Intelligence, 2021, 104, 104378.	8.1	7
35	An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images. , 2020, , .		7
36	Using dynamic time warping self-organizing maps to characterize diurnal patterns in environmental exposures. Scientific Reports, 2021, 11, 24052.	3.3	7

ΥΑΟ-ΥΙ CHIANG

#	Article	IF	CITATIONS
37	Building knowledge graph from public data for predictive analysis. , 2016, , .		6
38	Los angeles metro bus data analysis using GPS trajectory and schedule data (demo paper). , 2018, , .		6
39	Training Deep Learning Models for Geographic Feature Recognition from Historical Maps. Springer Briefs in Geography, 2020, , 65-98.	0.2	6
40	Unlocking Textual Content from Historical Maps - Potentials and Applications, Trends, and Outlooks. Communications in Computer and Information Science, 2017, , 111-124.	0.5	6
41	Automatically identifying and georeferencing street maps on the web. , 2005, , .		5
42	From map images to geographic names. , 2014, , .		5
43	SRC. SIGSPATIAL Special, 2018, 9, 14-15.	2.7	5
44	Extracting Road Vector Data from Raster Maps. Lecture Notes in Computer Science, 2010, , 93-105.	1.3	5
45	ADMSv2., 2019,,.		5
46	Classification of raster maps for automatic feature extraction. , 2009, , .		4
47	Historical Map Applications and Processing Technologies. Springer Briefs in Geography, 2020, , 9-36.	0.2	4
48	Classification of Line and Character Pixels on Raster Maps Using Discrete Cosine Transformation Coefficients and Support Vector Machine. , 2006, , .		3
49	Integrating Text Recognition for Overlapping Text Detection in Maps. IS&T International Symposium on Electronic Imaging, 2016, 28, 1-8.	0.4	3
50	Recognizing text in historical maps using maps from multiple time periods. , 2016, , .		3
51	SRC. SIGSPATIAL Special, 2018, 9, 6-7.	2.7	3
52	An Uncertainty Aware Method for Geographic Data Conflation. , 2018, , .		3
53	Extracting geographic features from the Internet: A geographic information mining framework. Knowledge-Based Systems, 2019, 174, 57-72.	7.1	3
54	Creating Structured, Linked Geographic Data from Historical Maps: Challenges and Trends. Springer Briefs in Geography, 2020, , 37-63.	0.2	3

ΥΑΟ-ΥΙ CHIANG

#	Article	IF	CITATIONS
55	A general approach to discovering, registering, and extracting features from raster maps. , 2010, , .		2
56	Integration and Automation of Data Preparation and Data Mining. , 2014, , .		2
57	A VLOS Compliance Solution to Ground/Aerial Parcel Delivery Problem. , 2019, , .		2
58	An intelligent interface for integrating climate, hydrology, agriculture, and socioeconomic models. , 2019, , .		2
59	Generating Named Road Vector Data from Raster Maps. Lecture Notes in Computer Science, 2012, , 57-71.	1.3	2
60	Q2P. ACM Transactions on the Web, 2016, 10, 1-29.	2.5	2
61	Strabo. , 2010, , .		1
62	Building Explainable Predictive Analytics for Location-Dependent Time-Series Data. , 2019, , .		1
63	Kartta Labs: Collaborative Time Travel. , 0, , .		1
64	Automatic intersection extraction and building arrangement with StarCraft II maps. , 2018, , .		0
65	W-TSS: A Wavelet-Based Algorithm for Discovering Time Series Shapelets. Sensors, 2021, 21, 5801.	3.8	Ο
66	Methods for Predicting Asthma Exacerbations using Personal Sensor Monitoring Systems. ISEE Conference Abstracts, 2018, 2017, 436.	0.0	0
67	Automatic intersection extraction and building arrangement with StarCraft II maps. SIGSPATIAL Special, 2019, 10, 4-5.	2.7	0