
Khaled El-Adl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6665298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, synthesis, docking, and anticancer evaluations of phthalazines as VEGFRâ€2 inhibitors. Archiv Der Pharmazie, 2022, 355, e2100278.	2.1	9
2	Design, synthesis, in silico ADMET, docking, and antiproliferative evaluations of [1,2,4]triazolo[4,3―c]quinazolines as classical DNA intercalators. Archiv Der Pharmazie, 2022, , e2100412.	2.1	8
3	Design, Molecular Docking, Synthesis, Anticancer and Anti-Hyperglycemic Assessments of Thiazolidine-2,4-diones Bearing Sulfonylthiourea Moieties as Potent VEGFR-2 Inhibitors and PPARÎ ³ Agonists. Pharmaceuticals, 2022, 15, 226.	1.7	20
4	Antiproliferative evaluations of triazoloquinazolines as classical DNA intercalators: Design, synthesis, ADMET profile, and molecular docking. Archiv Der Pharmazie, 2022, 355, e2100487.	2.1	5
5	Triazoloquinazoline derived classical DNA intercalators: Design, synthesis, in silico ADME profile, docking, and antiproliferative evaluations. Archiv Der Pharmazie, 2022, 355, e2100506.	2.1	7
6	New quinoxalinâ€2(1 <i>H</i>)â€oneâ€derived VEGFRâ€2 inhibitors: Design, synthesis, in vitro anticancer evaluations, in silico ADMET, and docking studies. Archiv Der Pharmazie, 2022, , e2200048.	2.1	3
7	Design, synthesis, <i>in silico</i> docking, ADMET and anticancer evaluations of thiazolidine-2,4-diones bearing heterocyclic rings as dual VEGFR-2/EGFR ^{T790M} tyrosine kinase inhibitors. RSC Advances, 2022, 12, 12913-12931.	1.7	20
8	Triazoloquinoxalines-based DNA intercalators-Topo II inhibitors: design, synthesis, docking, ADMET and anti-proliferative evaluations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1556-1567.	2.5	5
9	Nanogel-mediated drug delivery system for anticancer agent: pH stimuli responsive poly(ethylene) Tj ETQq1 1 0.7	'84314 rgl 2.0	BT_/Overlock
10	Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Archiv Der Pharmazie, 2021, 354, e2000277.	2.1	30
11	<i>N</i> â€Substitutedâ€4â€phenylphthalazinâ€1â€amineâ€derived VEGFRâ€2 inhibitors: Design, synthesis, mol docking, and anticancer evaluation studies. Archiv Der Pharmazie, 2021, 354, e2000219.	ecular 2.1	24
12	Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorganic and Medicinal Chemistry, 2021, 29, 115872.	1.4	57
13	Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5â€{(4â€chloro/2,4â€dichloro)benzylidene]thiazolidineâ€2,4â€dione derivatives as VEGFRâ€2 inhibitors. Archiv Der Pharmazie, 2021, 354, e2000279.	2.1	33
14	Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies. Molecular Diversity, 2021, 25, 403-420.	2.1	35
15	New quinoxaline-2(1 <i>H</i>)-ones as potential VEGFR-2 inhibitors: design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. New Journal of Chemistry, 2021, 45, 16949-16964.	1.4	53
16	1,2,4-Triazolo[4,3- <i>c</i>]quinazolines: a bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity. New Journal of Chemistry, 2021, 45, 11136-11152.	1.4	34
17	[1,2,4]Triazolo[4,3-c]quinazoline and bis([1,2,4]triazolo)[4,3-a:4′,3′-c]quinazoline derived DNA intercalators: Design, synthesis, in silico ADMET profile, molecular docking and anti-proliferative evaluation studies. Bioorganic and Medicinal Chemistry, 2021, 30, 115958.	1.4	46
18	[1,2,4]Triazolo[4,3- <i>a</i>]quinoxaline and [1,2,4]triazolo[4,3- <i>a</i>]quinoxaline-1-thiol-derived DNA intercalators: design, synthesis, molecular docking, <i>in silico</i> ADMET profiles and anti-proliferative evaluations. New Journal of Chemistry, 2021, 45, 881-897.	1.4	32

Khaled El-Adl

#	Article	IF	CITATIONS
19	In vivo―and in silicoâ€driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Archiv Der Pharmazie, 2021, 354, e2000449.	2.1	27
20	Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidineâ€2,4â€dione derivatives as VEGFRâ€2 inhibitors. Archiv Der Pharmazie, 2021, 354, e2000491.	2.1	24
21	Design, synthesis, molecular docking, in silico ADMET profile and anticancer evaluations of sulfonamide endowed with hydrazone-coupled derivatives as VEGFR-2 inhibitors. Bioorganic Chemistry, 2021, 108, 104669.	2.0	34
22	Pyridineâ€derived VEGFRâ€⊋ inhibitors: Rational design, synthesis, anticancer evaluations, in silico ADMET profile, and molecular docking. Archiv Der Pharmazie, 2021, 354, e2100085.	2.1	28
23	Pharmacophoreâ€linked pyrazolo[3,4â€ <i>d</i>]pyrimidines as EGFRâ€TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Archiv Der Pharmazie, 2021, , e2100258.	2.1	44
24	Phthalazineâ€based VEGFRâ€⊋ inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Archiv Der Pharmazie, 2021, 354, e2100201.	2.1	35
25	Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorganic Chemistry, 2021, 114, 105105.	2.0	59
26	Design, synthesis, molecular docking and in silico ADMET profile of pyrano[2,3-d]pyrimidine derivatives as antimicrobial and anticancer agents. Bioorganic Chemistry, 2021, 115, 105186.	2.0	36
27	The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and <i>in silico</i> mechanistic studies as dual DNA gyrase and DHFR inhibitors. New Journal of Chemistry, 2021, 45, 13986-14004.	1.4	48
28	Design, synthesis, anticancer, and docking of some S―and/or Nâ€heterocyclic derivatives as VEGFRâ€2 inhibitors. Archiv Der Pharmazie, 2021, , e2100237.	2.1	6
29	Discovery of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorganic Chemistry, 2020, 105, 104380.	2.0	60
30	Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorganic Chemistry, 2020, 104, 104350.	2.0	45
31	Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorganic Chemistry, 2020, 104, 104218.	2.0	70
32	Design, synthesis, molecular docking and anti-proliferative evaluations of [1,2,4]triazolo[4,3-a]quinoxaline derivatives as DNA intercalators and Topoisomerase II inhibitors. Bioorganic Chemistry, 2020, 105, 104399.	2.0	44
33	Design, synthesis, molecular docking, and anticancer evaluations of 1â€benzylquinazolineâ€2,4(1 <i>H</i> ,3 <i>H</i>)â€dione bearing different moieties as VEGFRâ€2 inhibitors. Arch Der Pharmazie, 2020, 353, e2000068.	niv2.1	37
34	5â€(4â€Methoxybenzylidene)thiazolidineâ€2,4â€dioneâ€derived VEGFRâ€2 inhibitors: Design, synthesis, molecu docking, and anticancer evaluations. Archiv Der Pharmazie, 2020, 353, e2000079.	lar 2.1	33
35	Design, synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorganic Chemistry, 2020, 102, 104059.	2.0	66
36	Benzoxazole/benzothiazoleâ€derived VEGFRâ€2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Archiv Der Pharmazie, 2019, 352, e1900178.	2.1	75

Khaled El-Adl

#	Article	IF	CITATIONS
37	Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Archiv Der Pharmazie, 2019, 352, e1900123.	2.1	54
38	Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFRâ€⊋ inhibitors. Archiv Der Pharmazie, 2019, 352, e1900113.	2.1	103
39	Design, synthesis, in silico ADMET profile and GABAâ€A docking of novel phthalazines as potent anticonvulsants. Archiv Der Pharmazie, 2019, 352, e1800387.	2.1	41
40	Phthalazine-1,4-dione derivatives as non-competitive AMPA receptor antagonists: design, synthesis, anticonvulsant evaluation, ADMET profile and molecular docking. Molecular Diversity, 2019, 23, 283-298.	2.1	37
41	Design, Synthesis, In Vitro Anti-cancer Activity, ADMET Profile and Molecular Docking of Novel Triazolo[3,4-a]phthalazine Derivatives Targeting VEGFR-2 Enzyme. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 1184-1196.	0.9	33
42	Quinoxalin-2(1H)-one derived AMPA-receptor antagonists: Design, synthesis, molecular docking and anticonvulsant activity. Medicinal Chemistry Research, 2017, 26, 2967-2984.	1.1	22
43	Design, Synthesis, Molecular Docking, and Anticancer Activity of Phthalazine Derivatives as VEGFRâ€2 Inhibitors. Archiv Der Pharmazie, 2017, 350, 1700240.	2.1	53
44	Design, synthesis, molecular modeling and biological evaluation of novel 2,3-dihydrophthalazine-1,4-dione derivatives as potential anticonvulsant agents. Journal of Molecular Structure, 2017, 1130, 333-351.	1.8	53
45	Synthesis, Modelling, and Anticonvulsant Studies of New Quinazolines Showing Three Highly Active Compounds with Low Toxicity and High Affinity to the GABA-A Receptor. Molecules, 2017, 22, 188.	1.7	19
46	Design, molecular docking and synthesis of some novel 4-acetyl-1-substituted-3,4-dihydroquinoxalin-2(1H)-one derivatives for anticonvulsant evaluation as AMPA-receptor antagonists. Medicinal Chemistry Research, 2016, 25, 3030-3046.	1.1	26
47	Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo-2-phenyl-3-substituted-quinazolin-4(3H)-ones. Bulletin of Faculty of Pharmacy, Cairo University, 2015, 53, 101-116.	0.2	32
48	Design, synthesis, docking, and biological evaluation of some novel 5-chloro-2-substituted sulfanylbenzoxazole derivatives as anticonvulsant agents. Medicinal Chemistry Research, 2015, 24, 99-114.	1.1	19
49	Design, synthesis, and biological evaluation studies of novel quinazolinone derivatives as anticonvulsant agents. Medicinal Chemistry Research, 2013, 22, 5823-5831.	1.1	25
50	Design and synthesis of some novel 2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)-N-(4-(substituted)phenyl)acetamide derivatives for biological evaluation as anticonvulsant agents. Bulletin of Faculty of Pharmacy, Cairo University, 2013, 51, 101-111.	0.2	27