Krzysztof Tomczyk

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6665169/publications.pdf
Version: 2024-02-01

Procedure Proposal for Minimising the Dynamic Error of Second-Order Sensors. Sensors, 2022, 22,
1901.

Assessment of measurement uncertainties for energy signals stimulating the selected NiTi alloys during the wire electrical discharge machining. Precision Engineering, 2022, 76, 133-140.
3.4

Procedure for the extended calibration of temperature sensors. Measurement: Journal of the International Measurement Confederation, 2022, 196, 111239.

Application of Identification Reference Nets for the Preliminary Modeling on the Example of Electrical Machines. Energies, 2021, 14, 3091.

Procedure proposal for establishing the class of dynamic accuracy for measurement sensors using
5 simulation signals with one constraint. Measurement: Journal of the International Measurement
$5.0 \quad 6$ Confederation, 2021, 178, 109367.

6 Procedure for the Accurate Modelling of Ring Induction Motors. Energies, 2021, 14, 5469.

7 Special functions for the extended calibration of charge-mode accelerometers. Precision Engineering,
7 2021, 71, 153-169.

Analysis of the Accelerometer Inputâ€"Output Energy Distribution Based on the Upper Bound of Absolute Dynamic Error. Energies, 2020, 13, 5816.

Procedure for Determining the Uncertainties in the Modeling of Surface Roughness in the Turning of
Procedure for Determining the Uncertainties in the Modeling of Surface
NiTi Alloys Using the Monte Carlo Method. Materials, 2020, 13, 4338.

Monte Carlo-Based Procedure for Determining the Maximum Energy at the Output of Accelerometers.
Energies, 2020, 13, 1552.

Application of the Monte Carlo Method for Parametric Identification of Accelerometers in the
Frequency Domain. , 2020, 24, 31-38.

Radial Basis Functions Intended to Determine the Upper Bound of Absolute Dynamic Error at the
Output of Voltage-Mode Accelerometers. Sensors, 2019, 19, 4154.

Assessment of Convergence of the Algorithm for Determining the Upper Bound of Dynamic Error on the Example of Acceleration Sensors. , 2019, , .

Influence of Monte Carlo generations applied for modelling of measuring instruments on maximum distance error. Transactions of the Institute of Measurement and Control, 2019, 41, 74-84.

Frequency Components of Signals Producing the Upper Bound of Absolute Error Generated by the Charge Output Accelerometers. Lecture Notes in Electrical Engineering, 2019, , 351-359.

Polynomial Approximation of the Maximum Dynamic Error Generated by Measurement Systems.
Przeglad Elektrotechniczny, 2019, 1, 126-129.

```
19 Optimal Dynamic Error Formula for Charge Output Accelerometer Obtained by the Neural Network.,
2018, ..
```

20 Impact of the reference model on the values of maximum dynamic error. , 2018, , .
1

21 Usage of structural optimization algorithm of neural nets in problems of data classification. , 2017, , . 0

22 Energy density for signals maximizing the integral-square error. Measurement: Journal of the
$5.0 \quad 6$
International Measurement Confederation, 2016, 90, 224-232.

Impact of uncertainties in accelerometer modeling on the maximum values of absolute dynamic error.
Measurement: Journal of the International Measurement Confederation, 2016, 80, 71-78.
5.0

Problems in Modelling Charge Output Accelerometers. Metrology and Measurement Systems, 2016, 23,
645-659.
1.4

5

25 Signal Transforms in Dynamic Measurements. Studies in Systems, Decision and Control, 2015, , .
1.0

Accelerometer errors in the measurement of dynamic signals. Measurement: Journal of the International Measurement Confederation, 2015, 60, 292-298.
5.0

33 Measurements, Modelling and Simulation of Dynamic Systems. , 2010, , .

