Ana Méndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/666483/publications.pdf

Version: 2024-02-01

26 papers 1,937 citations

15 h-index 23 g-index

27 all docs

27 docs citations

times ranked

27

1421 citing authors

#	Article	IF	CITATIONS
1	GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress. Cell Death and Disease, 2020, 11, 62.	2.7	9
2	Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. ELife, 2020, 9 , .	2.8	35
3	Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina. Scientific Reports, 2018, 8, 2903.	1.6	11
4	Functional EF-Hands in Neuronal Calcium Sensor GCAP2 Determine Its Phosphorylation State and Subcellular Distribution In Vivo, and Are Essential for Photoreceptor Cell Integrity. PLoS Genetics, 2014, 10, e1004480.	1.5	14
5	Overexpression of Guanylate Cyclase Activating Protein 2 in Rod Photoreceptors In Vivo Leads to Morphological Changes at the Synaptic Ribbon. PLoS ONE, 2012, 7, e42994.	1.1	14
6	Enhanced Arrestin Facilitates Recovery and Protects Rods Lacking Rhodopsin Phosphorylation. Current Biology, 2009, 19, 700-705.	1.8	178
7	Enhanced Arrestin Facilitates Recovery and Protects Rods Lacking Rhodopsin Phosphorylation. Current Biology, 2009, 19, 798.	1.8	O
8	Functional Comparisons of Visual Arrestins in Rod Photoreceptors of Transgenic Mice., 2007, 48, 1968.		41
9	Deactivation of Phosphorylated and Nonphosphorylated Rhodopsin by Arrestin Splice Variants. Journal of Neuroscience, 2006, 26, 1036-1044.	1.7	46
10	Multiple Phosphorylation Sites Confer Reproducibility of the Rod's Single-Photon Responses. Science, 2006, 313, 530-533.	6.0	117
11	The Presence of a Leu-Gly-Asn Repeat–Enriched Protein (LGN), a Putative Binding Partner of Transducin, in ROD Photoreceptors. , 2005, 46, 383.		26
12	Light-Dependent Redistribution of Arrestin in Vertebrate Rods Is an Energy-Independent Process Governed by Protein-Protein Interactions. Neuron, 2005, 46, 555-567.	3.8	162
13	Light-Dependent Translocation of Arrestin in the Absence of Rhodopsin Phosphorylation and Transducin Signaling. Journal of Neuroscience, 2003, 23, 3124-3129.	1.7	100
14	The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors. Vision Research, 2002, 42, 417-426.	0.7	71
15	Dynamics of Cyclic GMP Synthesis in Retinal Rods. Neuron, 2002, 36, 81-91.	3.8	207
16	Mouse Models to Study GCAP Functions In Intact Photoreceptors. Advances in Experimental Medicine and Biology, 2002, 514, 361-388.	0.8	10
17	Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 2001, 23, 105-118.	0.7	74
18	Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9948-9953.	3.3	231

#	Article	IF	CITATION
19	[11] Functional study of rhodopsin phosphorylation in vivo. Methods in Enzymology, 2000, 316, 167-185.	0.4	8
20	Rapid and Reproducible Deactivation of Rhodopsin Requires Multiple Phosphorylation Sites. Neuron, 2000, 28, 153-164.	3.8	243
21	Replication and Packaging of Transmissible Gastroenteritis Coronavirus-Derived Synthetic Minigenomes. Journal of Virology, 1999, 73, 1535-1545.	1.5	71
22	The Spike Protein of Transmissible Gastroenteritis Coronavirus Controls the Tropism of Pseudorecombinant Virions Engineered Using Synthetic Minigenomes. Advances in Experimental Medicine and Biology, 1998, 440, 207-214.	0.8	3
23	Molecular Characterization of Transmissible Gastroenteritis Coronavirus Defective Interfering Genomes: Packaging and Heterogeneity. Virology, 1996, 217, 495-507.	1.1	71
24	Evolution and Tropism of Transmissible Gastroenteritis Coronavirus. Advances in Experimental Medicine and Biology, 1994, 342, 35-42.	0.8	11
25	Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology, 1992, 190, 92-105.	1.1	157
26	Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus. Veterinary Microbiology, 1992, 33, 249-262.	0.8	27