
Gerd Schoenhense

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6664497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spin- and time-resolved photoelectron spectroscopy and diffraction studies using time-of-flight momentum microscopes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	2.1	2
2	Structure Analysis Using Time-of-Flight Momentum Microscopy with Hard X-rays: Status and Prospects. Journal of the Physical Society of Japan, 2022, 91, .	1.6	5
3	Band structure tuning of Heusler compounds: Spin- and momentum-resolved electronic structure analysis of compounds with different band filling. Physical Review B, 2021, 103, .	3.2	11
4	Site-specific atomic order and band structure tailoring in the diluted magnetic semiconductor (In,Ga,Mn)As. Physical Review B, 2021, 103, .	3.2	18
5	Temperature-dependent change of the electronic structure in the Kondo lattice system YbRh ₂ Si ₂ . Journal of Physics Condensed Matter, 2021, 33, 205601.	1.8	6
6	Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens. Review of Scientific Instruments, 2021, 92, 053703.	1.3	17
7	Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. Journal of Physics Condensed Matter, 2021, 33, 233001.	1.8	55
8	Bulk spin polarization of magnetite from spin-resolved hard x-ray photoelectron spectroscopy. Physical Review B, 2021, 104, .	3.2	5
9	Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics. Nature Communications, 2021, 12, 5088.	12.8	25
10	Ultrafast electronic linewidth broadening in the C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>score level of graphene. Physical Review B, 2021, 104, .</mml:mi></mml:mrow></mml:math 	mi>≰n₂ml:n	nro us >
11	Time-of-flight photoelectron momentum microscopy with 80–500 MHz photon sources: electron-optical pulse picker or bandpass pre-filter. Journal of Synchrotron Radiation, 2021, 28, 1891-1908.	2.4	11
12	Néel Vector Induced Manipulation of Valence States in the Collinear Antiferromagnet Mn ₂ Au. ACS Nano, 2020, 14, 17554-17564.	14.6	17
13	Compact setup for spin-, time-, and angle-resolved photoemission spectroscopy. Review of Scientific Instruments, 2020, 91, 063001.	1.3	5
14	Momentum-transfer model of valence-band photoelectron diffraction. Communications Physics, 2020, 3, .	5.3	13
15	Relation between spin–orbit induced spin polarization, Fano-effect and circular dichroism in soft x-ray photoemission. Journal of Physics Condensed Matter, 2020, 32, 135501.	1.8	9
16	Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Review of Scientific Instruments, 2020, 91, 013109.	1.3	72
17	Single-hemisphere photoelectron momentum microscope with time-of-flight recording. Review of Scientific Instruments, 2020, 91, 123110.	1.3	12
18	Emitter-site specificity of hard x-ray photoelectron Kikuchi-diffraction. New Journal of Physics, 2020, 22, 103002	2.9	12

#	Article	IF	CITATIONS
19	Rashba splitting of the Tamm surface state on Re(0001) observed by spin-resolved photoemission and scanning tunneling spectroscopy. Physical Review Research, 2020, 2, .	3.6	12
20	High-resolution hard-x-ray photoelectron diffraction in a momentum microscope—the model case of graphite. New Journal of Physics, 2019, 21, 113031.	2.9	17
21	High-accuracy bulk electronic bandmapping with eliminated diffraction effects using hard X-ray photoelectron momentum microscopy. Communications Physics, 2019, 2, .	5.3	26
22	The new dedicated HAXPES beamline P22 at PETRAIII. AIP Conference Proceedings, 2019, , .	0.4	68
23	4D texture of circular dichroism in soft-x-ray photoemission from tungsten. New Journal of Physics, 2019, 21, 013017.	2.9	18
24	Progress in HAXPES performance combining full-field <i>k</i> -imaging with time-of-flight recording. Journal of Synchrotron Radiation, 2019, 26, 1996-2012.	2.4	30
25	Multidimensional photoemission spectroscopy—the space-charge limit. New Journal of Physics, 2018, 20, 033004.	2.9	36
26	New HAXPES Applications at PETRA III. Synchrotron Radiation News, 2018, 31, 29-35.	0.8	23
27	Direct 3D mapping of the Fermi surface and FermiÂvelocity. Nature Materials, 2017, 16, 615-621.	27.5	97
28	Vectorial spin polarization detection in multichannel spin-resolved photoemission spectroscopy using an Ir(001) imaging spin filter. Physical Review B, 2017, 95, .	3.2	6
29	Momentum-resolved photoelectron absorption in surface barrier scattering on Ir(111) and graphene/Ir(111). Physical Review B, 2017, 96, .	3.2	4
30	Momentum Distribution of Electrons Emitted from Resonantly Excited Individual Gold Nanorods. Nano Letters, 2017, 17, 6606-6612.	9.1	28
31	Spin-filtered time-of-flight k-space microscopy of Ir – Towards the "complete―photoemission experiment. Ultramicroscopy, 2017, 183, 19-29.	1.9	27
32	Hosting of surface states in spin–orbit induced projected bulk band gaps of W(1 1 0) and Ir(1 1â of Physics Condensed Matter, 2017, 29, 255001.	쀉1). Jo 1.8	urnal
33	Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111). Applied Physics Letters, 2016, 108, .	3.3	34
34	Dirac cone and pseudogapped density of states in the topological half-Heusler compound YPtBi. Physical Review B, 2016, 94, .	3.2	9
35	Spin mapping of surface and bulk Rashba states in ferroelectric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi> -GeTe(111) films. Physical Review B, 2016, 94, .</mml:math 	3.2	46
36	Spin texture of time-reversal symmetry invariant surface states on W(110). Scientific Reports, 2016, 6, 29394.	3.3	27

#	Article	IF	CITATIONS
37	Development of hard X-ray photoelectron SPLEED-based spectrometer applicable for probing of buried magnetic layer valence states. Journal of Electron Spectroscopy and Related Phenomena, 2016, 211, 12-18.	1.7	9
38	Anomalous d-like surface resonances on Mo(110) analyzed by time-of-flight momentum microscopy. Ultramicroscopy, 2015, 159, 453-463.	1.9	41
39	FMR Investigations of Two-dimensional Periodic Arrays of Disc-shaped Co Particles at Different Temperatures. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3587-3591.	1.8	3
40	Correction of the deterministic part of space–charge interaction in momentum microscopy of charged particles. Ultramicroscopy, 2015, 159, 488-496.	1.9	26
41	Space-, time- and spin-resolved photoemission. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 94-118.	1.7	71
42	Photon-assisted field emission from a Si tip at addition of an AC low voltage. Applied Physics A: Materials Science and Processing, 2015, 120, 161-165.	2.3	2
43	Synthesis of refractory metal nuggets and constraints on the thermal histories of nuggetâ€bearing Ca, Alâ€rich inclusions. Meteoritics and Planetary Science, 2015, 50, 893-903.	1.6	10
44	Investigation of a Ge nanoparticle film by means of electron stimulated photon emission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 193, 54-57.	1.7	0
45	Test object for emission electron microscope. Applied Physics A: Materials Science and Processing, 2014, 114, 1383-1385.	2.3	0
46	Investigation of exchange bias effect of fine cobalt particles with oxidized surface. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	3
47	Imaging spin filter for electrons based on specular reflection from iridium (001). Ultramicroscopy, 2013, 130, 63-69.	1.9	34
48	Decoration of atomic steps on (001)NaCl cleavage face during deposition of preformed Ag clusters. Applied Physics A: Materials Science and Processing, 2013, 111, 237-242.	2.3	1
49	Magnetoresistive properties of Fe3O4 nanoparticles embedded in a Cu matrix. Applied Physics A: Materials Science and Processing, 2013, 112, 463-467.	2.3	1
50	Quadratic magnetooptical effects in two-dimensional permalloy particles investigated by scanning X-ray microscopy. Applied Physics A: Materials Science and Processing, 2013, 111, 557-561.	2.3	3
51	Growth and defect studies of CdTe particles. Crystal Research and Technology, 2013, 48, 287-293.	1.3	0
52	Exchange coupling in the correlated electronic states of amorphous GdFe films. Physical Review B, 2013, 88, .	3.2	9
53	Detailed study of defects in thin fullerite films. Crystal Research and Technology, 2012, 47, 1255-1268.	1.3	2
54	Structure and magnetic properties of one-dimensional chains of ferromagnetic nanoparticles. Applied Physics A: Materials Science and Processing, 2012, 109, 699-702.	2.3	4

#	Article	IF	CITATIONS
55	Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes. Nano Letters, 2012, 12, 1885-1890.	9.1	74
56	Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons. Physical Review Letters, 2012, 108, 237602.	7.8	60
57	Spin Polarimetry and Magnetic Dichroism on a Buried Magnetic Layer Using Hard X-ray Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 2012, 51, 016602.	1.5	5
58	Magnetic sensitivity of a dispersion of aggregated ferromagnetic carbon nanotubes in liquid crystals. Soft Matter, 2011, 7, 644-649.	2.7	97
59	Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers. Physical Review B, 2011, 84, .	3.2	28
60	Sensor and microelectronic elements based on nanoscale granular systems. Journal of Nanoparticle Research, 2011, 13, 6263-6281.	1.9	17
61	Measurement of object height in emission electron microscopy. Applied Physics A: Materials Science and Processing, 2011, 102, 253-258.	2.3	3
62	Highly Efficient Multichannel Spin-Polarization Detection. Physical Review Letters, 2011, 107, 207601.	7.8	66
63	Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Applied Physics Letters, 2011, 99, .	3.3	80
64	Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 317-330.	1.7	48
65	Quantitative determination of magnetic fields from iron particles of oblong form encapsulated by carbon nanotubes using electron holography. Applied Physics A: Materials Science and Processing, 2009, 94, 543-547.	2.3	4
66	Quantitative Lorentz transmission electron microscopy ofÂstructured thin permalloy films. Applied Physics A: Materials Science and Processing, 2009, 96, 671-677.	2.3	7
67	Electron emission from films of Ag and Au nanoparticles excited by a femtosecond pump-probe laser. Physical Review B, 2008, 77, .	3.2	46
68	Ferromagnetic resonance study of thin film antidot arrays: Experiment and micromagnetic simulations. Physical Review B, 2007, 75, .	3.2	60
69	Dopant Contrast in Semiconductors as Interpretation Challenge at Imaging by Electrons. Materials Transactions, 2007, 48, 936-939.	1.2	7
70	Phase defect inspection of multilayer masks for 13.5nm optical lithography using PEEM in a standing wave mode. Surface Science, 2007, 601, 4758-4763.	1.9	7
71	Photoemission electron microscopy of neodymium-iron-boron (Nd2Fe14B). Applied Physics A: Materials Science and Processing, 2007, 86, 515-519.	2.3	1
72	Magnetic stray fields of patterned permalloy structures investigated by photoemission electron microscopy. Applied Physics A: Materials Science and Processing, 2007, 88, 793-796.	2.3	6

#	Article	IF	CITATIONS
73	The origin of contrast in the imaging of doped areas in silicon by slow electrons. Journal of Applied Physics, 2006, 100, 093712.	2.5	18
74	NanoESCA: imaging UPS and XPS with high energy resolution. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1179-1182.	1.7	44
75	Ferromagnetic resonance investigation of collective phenomena in two-dimensional periodic arrays of Co particles. Applied Physics A: Materials Science and Processing, 2005, 81, 679-683.	2.3	13
76	Two-photon photoemission spectromicroscopy of noble metal clusters on surfaces studied using time-of-flight photoemission electron microscopy. Journal of Physics Condensed Matter, 2005, 17, S1319-S1328.	1.8	19
77	Nanoelectron spectroscopy for chemical analysis: a novel energy filter for imaging x-ray photoemission spectroscopy. Journal of Physics Condensed Matter, 2005, 17, S1329-S1338.	1.8	82
78	Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields. Physical Review Letters, 2005, 95, 047601.	7.8	136
79	Lateral resolving power of a time-of-flight photoemission electron microscope. Applied Physics A: Materials Science and Processing, 2004, 78, 47-51.	2.3	9
80	Electrical and emission properties of current-carrying silver cluster films detected by an emission electron microscope. Applied Physics A: Materials Science and Processing, 2004, 79, 707-712.	2.3	10
81	Photoemission time-of-flight spectromicroscopy of Ag nanoparticle films on Si(111). Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 249-257.	1.7	24
82	Micromagnetism of two-dimensional permalloy particles with different aspect ratios. Applied Physics A: Materials Science and Processing, 2003, 76, 809-815.	2.3	4
83	Observation of Cu surface inhomogeneities by multiphoton photoemission spectromicroscopy. Applied Physics Letters, 2003, 83, 1503-1505.	3.3	30
84	Resolution of an emission electron microscope in the presence of magnetic fields on the object. Annalen Der Physik, 2002, 11, 461.	2.4	3
85	New applications of the magnetic X-ray circular dichroism method for surface-magnetism investigations in a photoemission electron microscope. Applied Physics A: Materials Science and Processing, 2002, 74, 295-298.	2.3	7
86	Time-resolved two photon photoemission electron microscopy. Applied Physics B: Lasers and Optics, 2002, 74, 223-227.	2.2	156
87	Size of three-dimensional objects measured by means of photoemission electron microscopy. Annalen Der Physik, 2002, 11, 39.	2.4	7
88	Time-of-flight photoemission electron microscopy – a new way to chemical surface analysis. Surface Science, 2001, 480, 180-187.	1.9	40
89	The spatial distribution of non-linear effects in multi-photon photoemission from metallic adsorbates on Si(1 1 1). Surface Science, 2001, 482-485, 687-692.	1.9	28
90	Microspectroscopy and imaging using a delay line detector in time-of-flight photoemission microscopy. Review of Scientific Instruments, 2001, 72, 3968-3974.	1.3	126

#	Article	IF	CITATIONS
91	Resolution deterioration in emission electron microscopy due to object roughness. Annalen Der Physik, 2000, 9, 441-451.	2.4	22
92	Imaging of magnetic structures by photoemission electron microscopy. Journal of Physics Condensed Matter, 1999, 11, 9517-9547.	1.8	56
93	Time-of-flight photoelectron emission microscopy TOF-PEEM: first results. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 406, 499-506.	1.6	45
94	Determination of xenon valence and conduction bands by spin-polarized photoemission. Physical Review Letters, 1987, 59, 331-334.	7.8	32
95	Characterization of Symmetry Properties of Pt(111) Electron Bands by Means of Angle-, Energy-, and Spin-Resolved Photoemission with Circularly Polarized Synchrotron Radiation. Physical Review Letters, 1984, 52, 1559-1562.	7.8	122
96	A capillary discharge tube for the production of intense VUV resonance radiation. Journal of Physics E: Scientific Instruments, 1983, 16, 74-82.	0.7	39
97	Angular Dependence of the Polarization of Photoelectrons Ejected by Plane-Polarized Radiation from Argon and Xenon Atoms. Physical Review Letters, 1980, 44, 640-643.	7.8	60
98	Polarization of Photoelectrons Ejected by Unpolarized Light from Xenon Atoms. Physical Review Letters, 1979, 42, 1603-1605.	7.8	85