Dervil Cody

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6664362/dervil-cody-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 176 9 12 g-index

26 225 3.1 2.97 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Use of a novel anthropomorphic prostate simulator in a prostate brachytherapy transrectal ultrasound imaging workshop for medical physicists <i>Physica Medica</i> , 2022 , 95, 156-166	2.7	O
23	Theoretical design of an absorption hologram-based sensor for dose quantification in daylight photodynamic therapy <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2022 , 39, 127-135	1.8	
22	Development and Preliminary Evaluation of an Anthropomorphic Trans-rectal Ultrasound Prostate Brachytherapy Training Phantom. <i>Ultrasound in Medicine and Biology</i> , 2021 , 47, 833-846	3.5	3
21	In-Situ Ellipsometric Study of the Optical Properties of LTL-Doped Thin Film Sensors for Copper(II) Ion Detection. <i>Coatings</i> , 2020 , 10, 423	2.9	3
20	The development of high quality training program for real tine trans rectal ultrasound low dose rate (LDR) prostate brachytherapy. <i>Physica Medica</i> , 2019 , 67, 200	2.7	
19	Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part II: volume gratings. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2018 , 35, 12-19	1.8	8
18	Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. <i>Applied Optics</i> , 2018 , 57, E173-E183	1.7	17
17	A novel calibration device for quality assurance of therapeutic ultrasound. <i>Physica Medica</i> , 2018 , 52, 175	2.7	
16	Serialized holography for brand protection and authentication. <i>Applied Optics</i> , 2018 , 57, E131-E137	1.7	13
15	LTL type nanozeolites utilized in surface photonics structures for environmental sensors. <i>Microporous and Mesoporous Materials</i> , 2018 , 261, 268-274	5.3	10
14	Humidity and temperature induced changes in the diffraction efficiency and the Bragg angle of slanted photopolymer-based holographic gratings. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 776-78	8 ⁸ .5	16
13	Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2017 , 34, 2110-2119	1.8	9
12	Low-Toxicity Photopolymer for Reflection Holography. <i>ACS Applied Materials & Description of the Communication of </i>	9.5	20
11	Photonic Materials for Holographic Sensing. Springer Series in Materials Science, 2016, 315-359	0.9	7
10	Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holographic Photopolymers. <i>Advances in Materials Science and Engineering</i> , 2016 , 2016, 1-11	1.5	1
9	Humidity and temperature response of photopolymer-based holographic gratings 2015,		1
8	Determination of the polymerisation rate of a low-toxicity diacetone acrylamide-based holographic photopolymer using Raman spectroscopy. <i>Optical Materials</i> , 2015 , 48, 12-17	3.3	6

LIST OF PUBLICATIONS

7	Effect of zeolite nanoparticles on the optical properties of diacetone acrylamide-based photopolymer. <i>Optical Materials</i> , 2014 , 37, 181-187	3.3	11	
6	Research on Holographic Sensors and Novel Photopolymers at the Centre for Industrial and Engineering Optics 2013 ,		1	
5	Effect of glycerol on a diacetone acrylamide-based holographic photopolymer material. <i>Applied Optics</i> , 2013 , 52, 489-94	1.7	15	
4	A Comparative Cytotoxic Evaluation of Acrylamide and Diacetone Acrylamide to Investigate Their Suitability for Holographic Photopolymer Formulations. <i>International Journal of Polymer Science</i> , 2013 , 2013, 1-6	2.4	10	
3	New non-toxic holographic photopolymer material. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 01560)1 1.7	24	
2	Diacetone acrylamide-based non-toxic holographic photopolymer 2012 ,		1	
1	Synthesis of Fast Curing, Water-Resistant and Photopolymerizable Glass for Recording of Holographic Structures by One- and Two-Photon Lithography. <i>Advanced Optical Materials</i> ,2102089	8.1	О	