
Yonghong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6664197/publications.pdf Version: 2024-02-01

YONCHONG SHI

#	Article	IF	CITATIONS
1	NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Molecular and Cellular Endocrinology, 2018, 478, 115-125.	1.6	142
2	PGC-1α, glucose metabolism and type 2 diabetes mellitus. Journal of Endocrinology, 2016, 229, R99-R115.	1.2	128
3	Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2016, 310, F547-F559.	1.3	88
4	The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress. International Journal of Molecular Medicine, 2017, 39, 1317-1324.	1.8	81
5	Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism: Clinical and Experimental, 2021, 118, 154748.	1.5	73
6	Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. Journal of Molecular Endocrinology, 2018, 61, 101-113.	1.1	68
7	Knockdown of thioredoxin-interacting protein ameliorates high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Cellular Signalling, 2013, 25, 2788-2796.	1.7	65
8	Fatty Acid-Binding Protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Molecular and Cellular Endocrinology, 2015, 411, 232-242.	1.6	59
9	Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Biochemical Journal, 2017, 474, 2733-2747.	1.7	55
10	Sphingosine kinase 1 protects renal tubular epithelial cells from renal fibrosis via induction of autophagy. International Journal of Biochemistry and Cell Biology, 2017, 90, 17-28.	1.2	43
11	CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochemical and Biophysical Research Communications, 2015, 468, 281-286.	1.0	38
12	The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrology Dialysis Transplantation, 2018, 33, 1908-1918.	0.4	38
13	Suppressor of Cytokine Signaling-1 Ameliorates Expression of MCP-1 in Diabetic Nephropathy. American Journal of Nephrology, 2010, 31, 380-388.	1.4	37
14	Nestin protects mouse podocytes against high glucoseâ€induced apoptosis by a Cdk5â€dependent mechanism. Journal of Cellular Biochemistry, 2012, 113, 3186-3196.	1.2	37
15	Suppressor of cytokine signalingâ€1 reduces high glucoseâ€induced TCFâ€Î²1 and fibronectin synthesis in human mesangial cells. FEBS Letters, 2008, 582, 3484-3488.	1.3	35
16	Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease. International Journal of Biochemistry and Cell Biology, 2016, 79, 1-13.	1.2	35
17	Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. International Journal of Molecular Medicine, 2018, 41, 1608-1618.	1.8	35
18	NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. Journal of Translational Medicine, 2022, 20, 44.	1.8	33

Yonghong Shi

#	Article	IF	CITATIONS
19	Inhibition of c-Src/p38 MAPK pathway ameliorates renal tubular epithelial cells apoptosis in db/db mice. Molecular and Cellular Endocrinology, 2015, 417, 27-35.	1.6	32
20	Knockdown of thioredoxin interacting protein attenuates high glucose-induced apoptosis and activation of ASK1 in mouse mesangial cells. FEBS Letters, 2011, 585, 1789-1795.	1.3	29
21	Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells. Drug Design, Development and Therapy, 2015, 9, 5099.	2.0	29
22	Carbohydrate response elementâ€binding protein regulates lipid metabolism via mTOR complex1 in diabetic nephropathy. Journal of Cellular Physiology, 2021, 236, 625-640.	2.0	27
23	Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. International Journal of Biochemistry and Cell Biology, 2018, 94, 61-70.	1.2	23
24	Nox4 is involved in high glucose-induced apoptosis in renal tubular epithelial cells via Notch pathway. Molecular Medicine Reports, 2017, 15, 4319-4325.	1.1	21
25	Thioredoxin-interacting protein deficiency ameliorates kidney inflammation and fibrosis in mice with unilateral ureteral obstruction. Laboratory Investigation, 2018, 98, 1211-1224.	1.7	21
26	Thioredoxinâ€interacting protein deficiency alleviates phenotypic alterations of podocytes via inhibition of mTOR activation in diabetic nephropathy. Journal of Cellular Physiology, 2019, 234, 16485-16502.	2.0	21
27	CTGF siRNA ameliorates tubular cell apoptosis and tubulointerstitial fibrosis in obstructed mouse kidneys in a Sirt1-independent manner. Drug Design, Development and Therapy, 2015, 9, 4155.	2.0	18
28	SOCS-1 is involved in TNF-α-induced mitochondrial dysfunction and apoptosis in renal tubular epithelial cells. Tissue and Cell, 2017, 49, 537-544.	1.0	17
29	TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Experimental Cell Research, 2020, 388, 111862.	1.2	17
30	SRT1720 retards renal fibrosis via inhibition of HIF1A/GLUT1 in diabetic nephropathy. Journal of Endocrinology, 2019, 241, 85-98.	1.2	17
31	<i><scp>CGB</scp>5</i> expression is independently associated with poor overall survival and recurrenceâ€free survival in patients with advanced gastric cancer. Cancer Medicine, 2018, 7, 716-725.	1.3	13
32	PP2 Ameliorates Renal Fibrosis by Regulating the NF-κB/COX-2 and PPARγ/UCP2 Pathway in Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-24.	1.9	11
33	ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. Journal of Diabetes and Its Complications, 2021, 35, 108050.	1.2	8
34	Sestrin2 attenuates renal damage by regulating Hippo pathway in diabetic nephropathy. Cell and Tissue Research, 2022, 390, 93-112.	1.5	6
35	Integrated Analysis of Multiple Microarray Studies to Identify Core Gene-Expression Signatures Involved in Tubulointerstitial Injury in Diabetic Nephropathy. BioMed Research International, 2022, 2022, 1-20.	0.9	5
36	Effects of transforming growth factor beta-activated kinase 1 (TAK1) on apoptosis of HK-2 cells in the high glucose environment. Bioengineered, 2022, 13, 5880-5891.	1.4	1

#	Article	IF	CITATIONS
37	Effects of MiR-23b/ MAPK on renal fibrosis in rats with diabetic nephropathy. Minerva Medica, 2021, , .	0.3	Ο